26,798 research outputs found

    Solving the characteristic initial value problem for colliding plane gravitational and electromagnetic waves

    Get PDF
    A method is presented for solving the characteristic initial value problem for the collision and subsequent nonlinear interaction of plane gravitational or gravitational and electromagnetic waves in a Minkowski background. This method generalizes the monodromy transform approach to fields with nonanalytic behaviour on the characteristics inherent to waves with distinct wave fronts. The crux of the method is in a reformulation of the main nonlinear symmetry reduced field equations as linear integral equations whose solutions are determined by generalized (``dynamical'') monodromy data which evolve from data specified on the initial characteristics (the wavefronts).Comment: 4 pages, RevTe

    Proof of a generalized Geroch conjecture for the hyperbolic Ernst equation

    Get PDF
    We enunciate and prove here a generalization of Geroch's famous conjecture concerning analytic solutions of the elliptic Ernst equation. Our generalization is stated for solutions of the hyperbolic Ernst equation that are not necessarily analytic, although it can be formulated also for solutions of the elliptic Ernst equation that are nowhere axis-accessible.Comment: 75 pages (plus optional table of contents). Sign errors in elliptic case equations (1A.13), (1A.15) and (1A.25) are corrected. Not relevant to proof contained in pape

    Collision of plane gravitational and electromagnetic waves in a Minkowski background: solution of the characteristic initial value problem

    Get PDF
    We consider the collisions of plane gravitational and electromagnetic waves with distinct wavefronts and of arbitrary polarizations in a Minkowski background. We first present a new, completely geometric formulation of the characteristic initial value problem for solutions in the wave interaction region for which initial data are those associated with the approaching waves. We present also a general approach to the solution of this problem which enables us in principle to construct solutions in terms of the specified initial data. This is achieved by re-formulating the nonlinear dynamical equations for waves in terms of an associated linear problem on the spectral plane. A system of linear integral ``evolution'' equations which solve this spectral problem for specified initial data is constructed. It is then demonstrated explicitly how various colliding plane wave space-times can be constructed from given characteristic initial data.Comment: 33 pages, 3 figures, LaTeX. Accepted for publication in Classical and Quantum Gravit

    Infrared astronomy

    Get PDF
    The role and contributions of Frank McDonald in extending high energy astrophysics to the sub-eV photon energy range (in putting infrared astronomy into orbit) are discussed

    Manufacturing with the Sun

    Get PDF
    Concentrated solar radiation is now a viable alternative source for many advanced manufacturing processes. Researchers at the National Renewable Energy Laboratory (NREL) have demonstrated the feasibility of processes such as solar induced surface transformation of materials (SISTM), solar based manufacturing, and solar pumped lasers. Researchers are also using sunlight to decontaminate water and soils polluted with organic compounds; these techniques could provide manufacturers with innovative alternatives to traditional methods of waste management. The solar technology that is now being integrated into today's manufacturing processes offer greater potential for tomorrow, especially as applied to the radiation abundant environment available in space and on the lunar surface

    Monodromy-data parameterization of spaces of local solutions of integrable reductions of Einstein's field equations

    Full text link
    For the fields depending on two of the four space-time coordinates only, the spaces of local solutions of various integrable reductions of Einstein's field equations are shown to be the subspaces of the spaces of local solutions of the ``null-curvature'' equations constricted by a requirement of a universal (i.e. solution independent) structures of the canonical Jordan forms of the unknown matrix variables. These spaces of solutions of the ``null-curvature'' equations can be parametrized by a finite sets of free functional parameters -- arbitrary holomorphic (in some local domains) functions of the spectral parameter which can be interpreted as the monodromy data on the spectral plane of the fundamental solutions of associated linear systems. Direct and inverse problems of such mapping (``monodromy transform''), i.e. the problem of finding of the monodromy data for any local solution of the ``null-curvature'' equations with given canonical forms, as well as the existence and uniqueness of such solution for arbitrarily chosen monodromy data are shown to be solvable unambiguously. The linear singular integral equations solving the inverse problems and the explicit forms of the monodromy data corresponding to the spaces of solutions of the symmetry reduced Einstein's field equations are derived.Comment: LaTeX, 33 pages, 1 figure. Typos, language and reference correction

    Optical Transistor for an Amplification of Radiation in a Broadband THz Domain

    Get PDF
    We propose a new type of optical transistor for a broadband amplification of THz radiation. It is made of a graphene--superconductor hybrid, where electrons and Cooper pairs couple by Coulomb forces. The transistor operates via the propagation of surface plasmons in both layers, and the origin of amplification is the quantum capacitance of graphene. It leads to THz waves amplification, the negative power absorption, and as a result, the system yields positive gain, and the hybrid acts like an optical transistor, operating with the terahertz light. It can, in principle, amplify even a whole spectrum of chaotic signals (or noise), that is required for numerous biological applications.Comment: 7 pages, 3 figure

    The large scale gas and dust distribution in the galaxy: Implications for star formation

    Get PDF
    Infrared Astronomy Observations are presented for the diffuse infrared (IR) emissions from the galactic plane at wavelengths of 60 and 100 microns and the total far infrared intensity and its longitudinal variations in the disk were derived. Using available CO, 5 GHz radio-continuum, and HI data, the IR luminosity per hydrogen mass and the ingrared excess (IRE) ratio in the Galaxy were derived. The longitudinal profiles of the 60 and 100 micron emission were linearly decomposed into three components that are associated with molecular (H2), neutral (HI), and ionized (HII) phases in the interstellar medium (ISM), and the relevant dust properties were derived in each phase. Implications of the findings for various models of the diffuse IR emisison and for star formation in the galactic disk are discussed
    corecore