670 research outputs found
Modelling Intraday Trading Activity Using Box-Cox-ACD Models
In this paper, I model the intraday trading activity based on volume durations, i.e. the waiting time until a predetermined volume is absorbed by the market. Since this concept measures the trading volume per time it is strongly related to market liquidity. I focus on volumes measured independently of the side of the market as well as on buy volumes, sell volumes and volumes measured on both market sides simultaneously. For econometric modelling of the different duration concepts, the performance of alternative types of Box-Cox-ACD models are analyzed. By evaluating out-of-sample forecasts, evidence is provided that Box-Cox-ACD models are a valuable tool for predicting volume durations. It is shown that volume durations measured independently of the side of the market have the best predictability. Furthermore, I illustrate that the inclusion of explanatory variables capturing past market activities concerning the price process and imbalances between the buy and sell side of the market. The empirical study uses IBM transaction data from the NYSE.volume durations, liquidity concepts, Generalized F distribution, out-of-sample-forecasts
Pre-averaging based estimation of quadratic variation in the presence of noise and jumps : theory, implementation, and empirical evidence
This paper provides theory as well as empirical results for pre-averaging estimators of the daily quadratic variation of asset prices. We derive jump robust inference for pre-averaging estimators, corresponding feasible central limit theorems and an explicit test on serial dependence in microstructure noise. Using transaction data of different stocks traded at the NYSE, we analyze the estimators’ sensitivity to the choice of the pre-averaging bandwidth and suggest an optimal interval length. Moreover, we investigate the dependence of pre-averaging based inference on the sampling scheme, the sampling frequency, microstructure noise properties as well as the occurrence of jumps. As a result of a detailed empirical study we provide guidance for optimal implementation of pre-averaging estimators and discuss potential pitfalls in practice. Quadratic Variation , MarketMicrostructure Noise , Pre-averaging , Sampling Schemes , Jump
Modelling Financial High Frequency Data Using Point Processes
In this chapter written for a forthcoming Handbook of Financial Time Series to be published by Springer-Verlag, we review the econometric literature on dynamic duration and intensity processes applied to high frequency financial data, which was boosted by the work of Engle and Russell (1997) on autoregressive duration modelsDuration, Intensity, Point process, High frequency data, ACD models
Bayesian Learning in Financial Markets: Testing for the Relevance of Information Precision in Price Discovery
An important claim of Bayesian learning and a standard assumption in price discovery models is that the strength of the price impact of unanticipated information depends on the precision of the news. In this paper, we test for this assumption by analyzing intra-day price responses of CBOT T-bond futures to U.S. employment announcements. By employing additional detail information besides the widely used headline figures, we extract release-specific precision measures which allow to test for the claim of Bayesian updating. We find that the price impact of more precise information is significantly stronger. The results remain stable even after controlling for an asymmetric price response to 'good' and 'bad' news.Bayesian learning; information precision; macroeconomic announcements; asymmetric price response; ¯nancial markets; high-frequency data
Discrete-Time Stochastic Volatility Models and MCMC-Based Statistical Inference
In this paper, we review the most common specifications of discrete-time stochas- tic volatility (SV) models and illustrate the major principles of corresponding Markov Chain Monte Carlo (MCMC) based statistical inference. We provide a hands-on ap- proach which is easily implemented in empirical applications and financial practice and can be straightforwardly extended in various directions. We illustrate empirical results based on different SV specifications using returns on stock indices and foreign exchange rates.Stochastic Volatility, Markov Chain Monte Carlo, Metropolis-Hastings al- Jump Processes
Quantifying high-frequency market reactions to real-time news sentiment announcements
We examine intra-day market reactions to news in stock-specific sentiment disclosures. Using pre-processed data from an automated news analytics tool based on linguistic pattern recognition we extract information on the relevance as well as the direction of company-specific news. Information-implied reactions in returns, volatility as well as liquidity demand and supply are quantified by a high-frequency VAR model using 20 second intervals. Analyzing a cross-section of stocks traded at the London Stock Exchange (LSE), we find market-wide robust news-dependent responses in volatility and trading volume. However, this is only true if news items are classified as highly relevant. Liquidity supply reacts less distinctly due to a stronger influence of idiosyncratic noise. Furthermore, evidence for abnormal highfrequency returns after news in sentiments is shown. JEL-Classification: G14, C3
Bayesian Inference in a Stochastic Volatility Nelson-Siegel Model
In this paper, we develop and apply Bayesian inference for an extended Nelson- Siegel (1987) term structure model capturing interest rate risk. The so-called Stochastic Volatility Nelson-Siegel (SVNS) model allows for stochastic volatility in the underlying yield factors. We propose a Markov chain Monte Carlo (MCMC) algorithm to efficiently estimate the SVNS model using simulation-based inference. Applying the SVNS model to monthly U.S. zero-coupon yields, we find significant evidence for time-varying volatility in the yield factors. This is mostly true for the level and slope volatility revealing also the highest persistence. It turns out that the inclusion of stochastic volatility improves the model's goodness-of-fit and clearly reduces the forecasting uncertainty particularly in low-volatility periods. The proposed approach is shown to work efficiently and is easily adapted to alternative specifications of dynamic factor models revealing (multivariate) stochastic volatility.term structure of interest rates, stochastic volatility, dynamic factor model, Markov chain Monte Carlo
On the Dark Side of the Market: Identifying and Analyzing Hidden Order Placements
Trading under limited pre-trade transparency becomes increasingly popular on financial markets. We provide first evidence on traders’ use of (completely) hidden orders which might be placed even inside of the (displayed) bid-ask spread. Employing TotalView-ITCH data on order messages at NASDAQ, we propose a simple method to conduct statistical inference on the location of hidden depth and to test economic hypotheses. Analyzing a wide cross-section of stocks, we show that market conditions reflected by the (visible) bid-ask spread, (visible) depth, recent price movements and trading signals significantly affect the aggressiveness of ’dark’ liquidity supply and thus the ’hidden spread’. Our evidence suggests that traders balance hidden order placements to (i) compete for the provision of (hidden) liquidity and (ii) protect themselves against adverse selection, front-running as well as ’hidden order detection strategies’ used by high-frequency traders. Accordingly, our results show that hidden liquidity locations are predictable given the observable state of the market.limit order market, hidden liquidity, high-frequency trading, non-display order, iceberg orders
Yield Curve Factors, Term Structure Volatility, and Bond Risk Premia
We introduce a Nelson-Siegel type interest rate term structure model with the underlying yield factors following autoregressive processes revealing time-varying stochastic volatility. The factor volatilities capture risk inherent to the term struc- ture and are associated with the time-varying uncertainty of the yield curve’s level, slope and curvature. Estimating the model based on U.S. government bond yields applying Markov chain Monte Carlo techniques we find that the yield factors and factor volatilities follow highly persistent processes. Using the extracted factors to explain one-year-ahead bond excess returns we observe that the slope and cur- vature yield factors contain the same explanatory power as the return-forecasting factor recently proposed by Cochrane and Piazzesi (2005). Moreover, we identify slope and curvature risk as important additional determinants of future excess returns. Finally, we illustrate that the yield and volatility factors are closely con- nected to variables reflecting macroeconomic activity, inflation, monetary policy and employment growth. It is shown that the extracted yield curve components have long-term prediction power for macroeconomic fundamentals.Term Structure Modelling; Yield Curve Risk; Stochastic Volatility; Factor Models; Macroeconomic Fundamentals
Copula-based dynamic conditional correlation multiplicative error processes : [Version 18 April 2013]
We introduce a copula-based dynamic model for multivariate processes of (non-negative) high-frequency trading variables revealing time-varying conditional variances and correlations. Modeling the variables’ conditional mean processes using a multiplicative error model we map the resulting residuals into a Gaussian domain using a Gaussian copula. Based on high-frequency volatility, cumulative trading volumes, trade counts and market depth of various stocks traded at the NYSE, we show that the proposed copula-based transformation is supported by the data and allows capturing (multivariate) dynamics in higher order moments. The latter are modeled using a DCC-GARCH specification. We suggest estimating the model by composite maximum likelihood which is sufficiently flexible to be applicable in high dimensions. Strong empirical evidence for time-varying conditional (co-)variances in trading processes supports the usefulness of the approach. Taking these higher-order dynamics explicitly into account significantly improves the goodness-of-fit of the multiplicative error model and allows capturing time-varying liquidity risks
- …
