17,419 research outputs found
Event Analysis of Pulse-reclosers in Distribution Systems Through Sparse Representation
The pulse-recloser uses pulse testing technology to verify that the line is
clear of faults before initiating a reclose operation, which significantly
reduces stress on the system components (e.g. substation transformers) and
voltage sags on adjacent feeders. Online event analysis of pulse-reclosers are
essential to increases the overall utility of the devices, especially when
there are numerous devices installed throughout the distribution system. In
this paper, field data recorded from several devices were analyzed to identify
specific activity and fault locations. An algorithm is developed to screen the
data to identify the status of each pole and to tag time windows with a
possible pulse event. In the next step, selected time windows are further
analyzed and classified using a sparse representation technique by solving an
l1-regularized least-square problem. This classification is obtained by
comparing the pulse signature with the reference dictionary to find a set that
most closely matches the pulse features. This work also sheds additional light
on the possibility of fault classification based on the pulse signature. Field
data collected from a distribution system are used to verify the effectiveness
and reliability of the proposed method.Comment: Accepted in: 19th International Conference on Intelligent System
Application to Power Systems (ISAP), San Antonio, TX, 201
Model For The Dynamics Of A Bubble Undergoing Small Shape Oscillations Between Elastic Layers
A model is presented for a pulsating and translating gas bubble in a channel formed by two soft elastic parallel layers. The bubble is free to undergo small shape deformations. Coupled nonlinear second-order differential equations are obtained for the shape and position of the bubble, and numerical integration of an expression for the liquid velocity at the layer interfaces yields an estimate of their displacement. Simulations reveal behavior consistent with laboratory observations.Applied Research Laboratorie
Recommended from our members
Coupled Pulsation And Translation Of A Gas Bubble And Rigid Particle
A nonlinear analytic model describing the interaction of a spherical gas bubble and spherical rigid particle is presented. Both the bubble and particle are free to translate. The model is accurate to fifth order in terms of a nondimensional expansion parameter R/d, where R is a characteristic radius and d is the distance separating the bubble and particle. Numerical simulation results are presented to demonstrate the effects of key particle parameters and an external acoustic source.Applied Research Laboratorie
Agricultural interpretation technique development
There are no author-identified significant results in this report
A pathway of signals regulating effector and initiator caspases in the developing Drosophila eye
Regulated cell death and survival play important roles in neural development. Extracellular signals are presumed to regulate seven apparent caspases to determine the final structure of the nervous system. In the eye, the EGF receptor, Notch, and intact primary pigment and cone cells have been implicated in survival or death signals. An antibody raised against a peptide from human caspase 3 was used to investigate how extracellular signals controlled spatial patterning of cell death. The antibody crossreacted specifically with dying Drosophila cells and labelled the activated effector caspase Drice. It was found that the initiator caspase Dronc and the proapoptotic gene head involution defective were important for activation in vivo. Dronc may play roles in dying cells in addition to activating downstream effector caspases. Epistasis experiments ordered EGF receptor, Notch, and primary pigment and cone cells into a single pathway that affected caspase activity in pupal retina through hid and Inhibitor of Apoptosis Proteins. None of these extracellular signals appeared to act by initiating caspase activation independently of hid. Taken together, these findings indicate that in eye development spatial regulation of cell death and survival is integrated through a single intracellular pathway
Cell death regulation in Drosophila: Conservation of mechanism and unique insights
Programmed cell death, or apoptosis, is a genetically encoded form of cell suicide that results in the orderly death and phagocytic removal of excess, damaged, or dangerous cells during normal development and in the adult. The cellular machinery required to carry out apoptosis is present in most, if not all cells, but is only activated in cells instructed to die (for review see Jacobson et al. 1997). Here, we review cell death regulation in the fly in the context of a first pass look at the complete Drosophila genome and what is known about death regulation in other organisms, particularly worms and vertebrates
Testing Einstein's time dilation under acceleration using M\"ossbauer spectroscopy
The Einstein time dilation formula was tested in several experiments. Many
trials have been made to measure the transverse second order Doppler shift by
M\"{o}ssbauer spectroscopy using a rotating absorber, to test the validity of
this formula. Such experiments are also able to test if the time dilation
depends only on the velocity of the absorber, as assumed by Einstein's clock
hypothesis, or the present centripetal acceleration contributes to the time
dilation. We show here that the fact that the experiment requires -ray
emission and detection slits of finite size, the absorption line is broadened;
by geometric longitudinal first order Doppler shifts immensely. Moreover, the
absorption line is non-Lorenzian. We obtain an explicit expression for the
absorption line for any angular velocity of the absorber.
The analysis of the experimental results, in all previous experiments which
did not observe the full absorption line itself, were wrong and the conclusions
doubtful. The only proper experiment was done by K\"{u}ndig (Phys. Rev. 129
(1963) 2371), who observed the broadening, but associated it to random
vibrations of the absorber. We establish necessary conditions for the
successful measurement of a transverse second order Doppler shift by
M\"{o}ssbauer spectroscopy. We indicate how the results of such an experiment
can be used to verify the existence of a Doppler shift due to acceleration and
to test the validity of Einstein's clock hypothesis.Comment: 11 pages, 4 figure
Incontinence-specific quality of life measures used in trials of treatments for female urinary incontinence: a systematic review.
This systematic review examined the use of incontinence-specific QOL measures in clinical trials of female incontinence treatments, and systematically evaluated their quality using a standard checklist.
Of 61 trials included in the review, 58 (95.1%) used an incontinence-specific QOL measure. The most commonly used were IIQ (19 papers), I-QoL (12 papers) and UDI (9 papers). Eleven papers (18.0%) used measures which were not referenced or were developed specifically for the study. The eight QOL measures identified had good clinical face validity and measurement properties.
We advise researchers to evaluate carefully the needs of their specific study, and select the QOL measure that is most appropriate in terms of validity, utility and relevance, and discourage the development of new measures. Until better evidence is available on the validity and comparability of measures, we recommend that researchers consider using IIQ or I-QOL with or without UDI in trials of incontinence treatments
The Proteasomal Deubiquitinating Enzyme PSMD14 Regulates Macroautophagy by Controlling Golgi-to-ER Retrograde Transport
Ubiquitination regulates several biological processes, however the role of specific members of the ubiquitinome on intracellular membrane trafficking is not yet fully understood. Here, we search for ubiquitin-related genes implicated in protein membrane trafficking performing a High-Content siRNA Screening including 1187 genes of the human “ubiquitinome” using amyloid precursor protein (APP) as a reporter. We identified the deubiquitinating enzyme PSMD14, a subunit of the 19S regulatory particle of the proteasome, specific for K63-Ub chains in cells, as a novel regulator of Golgi-to-endoplasmic reticulum (ER) retrograde transport. Silencing or pharmacological inhibition of PSMD14 with Capzimin (CZM) caused a robust increase in APP levels at the Golgi apparatus and the swelling of this organelle. We showed that this phenotype is the result of rapid inhibition of Golgi-to-ER retrograde transport, a pathway implicated in the early steps of the autophagosomal formation. Indeed, we observed that inhibition of PSMD14 with CZM acts as a potent blocker of macroautophagy by a mechanism related to the retention of Atg9A and Rab1A at the Golgi apparatus. As pharmacological inhibition of the proteolytic core of the 20S proteasome did not recapitulate these effects, we concluded that PSMD14, and the K63-Ub chains, act as a crucial regulatory factor for macroautophagy by controlling Golgi-to-ER retrograde transport
The N-end rule pathway controls multiple functions during Arabidopsis shoot and leaf development
The ubiquitin-dependent N-end rule pathway relates the in vivo half-life of a protein to the identity of its N-terminal residue. This proteolytic system is present in all organisms examined and has been shown to have a multitude of functions in animals and fungi. In plants, however, the functional understanding of the N-end rule pathway is only beginning. The N-end rule has a hierarchic structure. Destabilizing activity of N-terminal Asp, Glu, and (oxidized) Cys requires their conjugation to Arg by an arginyl–tRNA–protein transferase (R-transferase). The resulting N-terminal Arg is recognized by the pathway's E3 ubiquitin ligases, called “N-recognins.” Here, we show that the Arabidopsis R-transferases AtATE1 and AtATE2 regulate various aspects of leaf and shoot development. We also show that the previously identified N-recognin PROTEOLYSIS6 (PRT6) mediates these R-transferase-dependent activities. We further demonstrate that the arginylation branch of the N-end rule pathway plays a role in repressing the meristem-promoting BREVIPEDICELLUS (BP) gene in developing leaves. BP expression is known to be excluded from Arabidopsis leaves by the activities of the ASYMMETRIC LEAVES1 (AS1) transcription factor complex and the phytohormone auxin. Our results suggest that AtATE1 and AtATE2 act redundantly with AS1, but independently of auxin, in the control of leaf development
- …
