37,613 research outputs found

    Unitary-process discrimination with error margin

    Full text link
    We investigate a discrimination scheme between unitary processes. By introducing a margin for the probability of erroneous guess, this scheme interpolates the two standard discrimination schemes: minimum-error and unambiguous discrimination. We present solutions for two cases. One is the case of two unitary processes with general prior probabilities. The other is the case with a group symmetry: the processes comprise a projective representation of a finite group. In the latter case, we found that unambiguous discrimination is a kind of "all or nothing": the maximum success probability is either 0 or 1. We also closely analyze how entanglement with an auxiliary system improves discrimination performance.Comment: 9 pages, 3 figures, presentation improved, typos corrected, final versio

    Determinant of a new fermionic action on a lattice - (I)

    Get PDF
    We investigate, analytically and numerically, the fermion determinant of a new action on a (1+1)-dimensional Euclidean lattice. In this formulation the discrete chiral symmetry is preserved and the number of fermion components is a half of that of Kogut-Susskind. In particular, we show that our fermion determinant is real and positive for U(1) gauge group under specific conditions, which correspond to gauge conditions on the infinite lattice. It is also shown that the determinant is real and positive for SU(N) gauge group without any condition.Comment: 12 pages, 7 figure

    Quantum-state comparison and discrimination

    Full text link
    We investigate the performance of discrimination strategy in the comparison task of known quantum states. In the discrimination strategy, one infers whether or not two quantum systems are in the same state on the basis of the outcomes of separate discrimination measurements on each system. In some cases with more than two possible states, the optimal strategy in minimum-error comparison is that one should infer the two systems are in different states without any measurement, implying that the discrimination strategy performs worse than the trivial "no-measurement" strategy. We present a sufficient condition for this phenomenon to happen. For two pure states with equal prior probabilities, we determine the optimal comparison success probability with an error margin, which interpolates the minimum-error and unambiguous comparison. We find that the discrimination strategy is not optimal except for the minimum-error case.Comment: 8 pages, 1 figure, minor corrections made, final versio

    Group theoretical study of LOCC-detection of maximally entangled state using hypothesis testing

    Full text link
    In the asymptotic setting, the optimal test for hypotheses testing of the maximally entangled state is derived under several locality conditions for measurements. The optimal test is obtained in several cases with the asymptotic framework as well as the finite-sample framework. In addition, the experimental scheme for the optimal test is presented

    Quantum hypothesis testing with group symmetry

    Full text link
    The asymptotic discrimination problem of two quantum states is studied in the setting where measurements are required to be invariant under some symmetry group of the system. We consider various asymptotic error exponents in connection with the problems of the Chernoff bound, the Hoeffding bound and Stein's lemma, and derive bounds on these quantities in terms of their corresponding statistical distance measures. A special emphasis is put on the comparison of the performances of group-invariant and unrestricted measurements.Comment: 33 page

    Determining Structurally Identifiable Parameter Combinations Using Subset Profiling

    Full text link
    Identifiability is a necessary condition for successful parameter estimation of dynamic system models. A major component of identifiability analysis is determining the identifiable parameter combinations, the functional forms for the dependencies between unidentifiable parameters. Identifiable combinations can help in model reparameterization and also in determining which parameters may be experimentally measured to recover model identifiability. Several numerical approaches to determining identifiability of differential equation models have been developed, however the question of determining identifiable combinations remains incompletely addressed. In this paper, we present a new approach which uses parameter subset selection methods based on the Fisher Information Matrix, together with the profile likelihood, to effectively estimate identifiable combinations. We demonstrate this approach on several example models in pharmacokinetics, cellular biology, and physiology

    Curvature and topological effects on dynamical symmetry breaking in a four- and eight-fermion interaction model

    Full text link
    A dynamical mechanism for symmetry breaking is investigated under the circumstances with the finite curvature, finite size and non-trivial topology. A four- and eight-fermion interaction model is considered as a prototype model which induces symmetry breaking at GUT era. Evaluating the effective potential in the leading order of the 1/N-expansion by using the dimensional regularization, we explicitly calculate the phase boundary which divides the symmetric and the broken phase in a weakly curved space-time and a flat space-time with non-trivial topology, RD1S1R^{D-1} \otimes S^1.Comment: 20 pages, 21 figure

    Comparison between the Cramer-Rao and the mini-max approaches in quantum channel estimation

    Full text link
    In a unified viewpoint in quantum channel estimation, we compare the Cramer-Rao and the mini-max approaches, which gives the Bayesian bound in the group covariant model. For this purpose, we introduce the local asymptotic mini-max bound, whose maximum is shown to be equal to the asymptotic limit of the mini-max bound. It is shown that the local asymptotic mini-max bound is strictly larger than the Cramer-Rao bound in the phase estimation case while the both bounds coincide when the minimum mean square error decreases with the order O(1/n). We also derive a sufficient condition for that the minimum mean square error decreases with the order O(1/n).Comment: In this revision, some unlcear parts are clarifie
    corecore