37,613 research outputs found
Unitary-process discrimination with error margin
We investigate a discrimination scheme between unitary processes. By
introducing a margin for the probability of erroneous guess, this scheme
interpolates the two standard discrimination schemes: minimum-error and
unambiguous discrimination. We present solutions for two cases. One is the case
of two unitary processes with general prior probabilities. The other is the
case with a group symmetry: the processes comprise a projective representation
of a finite group. In the latter case, we found that unambiguous discrimination
is a kind of "all or nothing": the maximum success probability is either 0 or
1. We also closely analyze how entanglement with an auxiliary system improves
discrimination performance.Comment: 9 pages, 3 figures, presentation improved, typos corrected, final
versio
Determinant of a new fermionic action on a lattice - (I)
We investigate, analytically and numerically, the fermion determinant of a
new action on a (1+1)-dimensional Euclidean lattice. In this formulation the
discrete chiral symmetry is preserved and the number of fermion components is a
half of that of Kogut-Susskind. In particular, we show that our fermion
determinant is real and positive for U(1) gauge group under specific
conditions, which correspond to gauge conditions on the infinite lattice. It is
also shown that the determinant is real and positive for SU(N) gauge group
without any condition.Comment: 12 pages, 7 figure
Quantum-state comparison and discrimination
We investigate the performance of discrimination strategy in the comparison
task of known quantum states. In the discrimination strategy, one infers
whether or not two quantum systems are in the same state on the basis of the
outcomes of separate discrimination measurements on each system. In some cases
with more than two possible states, the optimal strategy in minimum-error
comparison is that one should infer the two systems are in different states
without any measurement, implying that the discrimination strategy performs
worse than the trivial "no-measurement" strategy. We present a sufficient
condition for this phenomenon to happen. For two pure states with equal prior
probabilities, we determine the optimal comparison success probability with an
error margin, which interpolates the minimum-error and unambiguous comparison.
We find that the discrimination strategy is not optimal except for the
minimum-error case.Comment: 8 pages, 1 figure, minor corrections made, final versio
Group theoretical study of LOCC-detection of maximally entangled state using hypothesis testing
In the asymptotic setting, the optimal test for hypotheses testing of the
maximally entangled state is derived under several locality conditions for
measurements. The optimal test is obtained in several cases with the asymptotic
framework as well as the finite-sample framework. In addition, the experimental
scheme for the optimal test is presented
Quantum hypothesis testing with group symmetry
The asymptotic discrimination problem of two quantum states is studied in the
setting where measurements are required to be invariant under some symmetry
group of the system. We consider various asymptotic error exponents in
connection with the problems of the Chernoff bound, the Hoeffding bound and
Stein's lemma, and derive bounds on these quantities in terms of their
corresponding statistical distance measures. A special emphasis is put on the
comparison of the performances of group-invariant and unrestricted
measurements.Comment: 33 page
Determining Structurally Identifiable Parameter Combinations Using Subset Profiling
Identifiability is a necessary condition for successful parameter estimation
of dynamic system models. A major component of identifiability analysis is
determining the identifiable parameter combinations, the functional forms for
the dependencies between unidentifiable parameters. Identifiable combinations
can help in model reparameterization and also in determining which parameters
may be experimentally measured to recover model identifiability. Several
numerical approaches to determining identifiability of differential equation
models have been developed, however the question of determining identifiable
combinations remains incompletely addressed. In this paper, we present a new
approach which uses parameter subset selection methods based on the Fisher
Information Matrix, together with the profile likelihood, to effectively
estimate identifiable combinations. We demonstrate this approach on several
example models in pharmacokinetics, cellular biology, and physiology
Curvature and topological effects on dynamical symmetry breaking in a four- and eight-fermion interaction model
A dynamical mechanism for symmetry breaking is investigated under the
circumstances with the finite curvature, finite size and non-trivial topology.
A four- and eight-fermion interaction model is considered as a prototype model
which induces symmetry breaking at GUT era. Evaluating the effective potential
in the leading order of the 1/N-expansion by using the dimensional
regularization, we explicitly calculate the phase boundary which divides the
symmetric and the broken phase in a weakly curved space-time and a flat
space-time with non-trivial topology, .Comment: 20 pages, 21 figure
Comparison between the Cramer-Rao and the mini-max approaches in quantum channel estimation
In a unified viewpoint in quantum channel estimation, we compare the
Cramer-Rao and the mini-max approaches, which gives the Bayesian bound in the
group covariant model. For this purpose, we introduce the local asymptotic
mini-max bound, whose maximum is shown to be equal to the asymptotic limit of
the mini-max bound. It is shown that the local asymptotic mini-max bound is
strictly larger than the Cramer-Rao bound in the phase estimation case while
the both bounds coincide when the minimum mean square error decreases with the
order O(1/n). We also derive a sufficient condition for that the minimum mean
square error decreases with the order O(1/n).Comment: In this revision, some unlcear parts are clarifie
- …
