1,038 research outputs found
Completeness and Incompleteness of Synchronous Kleene Algebra
Synchronous Kleene algebra (SKA), an extension of Kleene algebra (KA), was
proposed by Prisacariu as a tool for reasoning about programs that may execute
synchronously, i.e., in lock-step. We provide a countermodel witnessing that
the axioms of SKA are incomplete w.r.t. its language semantics, by exploiting a
lack of interaction between the synchronous product operator and the Kleene
star. We then propose an alternative set of axioms for SKA, based on Salomaa's
axiomatisation of regular languages, and show that these provide a sound and
complete characterisation w.r.t. the original language semantics.Comment: Accepted at MPC 201
Multidisciplinary teams, and parents, negotiating common ground in shared-care of children with long-term conditions: A mixed methods study
Background: Limited negotiation around care decisions is believed to undermine collaborative working between parents of children with long-term conditions and professionals, but there is little evidence of how they actually negotiate their respective roles. Using chronic kidney disease as an exemplar this paper reports on a multi-method study of social interaction between multidisciplinary teams and parents as they shared clinical care. Methods. Phases 1 and 2: a telephone survey mapping multidisciplinary teams' parent-educative activities, and qualitative interviews with 112 professionals (Clinical-psychologists, Dietitians, Doctors, Nurses, Play-specialists, Pharmacists, Therapists and Social-workers) exploring their accounts of parent-teaching in the 12 British children's kidney units. Phase 3: six ethnographic case studies in two units involving observations of professional/parent interactions during shared-care, and individual interviews. We used an analytical framework based on concepts drawn from Communities of Practice and Activity Theory. Results: Professionals spoke of the challenge of explaining to each other how they are aware of parents' understanding of clinical knowledge, and described three patterns of parent-educative activity that were common across MDTs: Engaging parents in shared practice; Knowledge exchange and role negotiation, and Promoting common ground. Over time, professionals had developed a shared repertoire of tools to support their negotiations with parents that helped them accomplish common ground during the practice of shared-care. We observed mutual engagement between professionals and parents where a common understanding of the joint enterprise of clinical caring was negotiated. Conclusions: For professionals, making implicit knowledge explicit is important as it can provide them with a language through which to articulate more clearly to each other what is the basis of their intuition-based hunches about parents' support needs, and may help them to negotiate with parents and accelerate parents' learning about shared caring. Our methodology and results are potentially transferrable to shared management of other conditions. © 2013 Swallow et al.; licensee BioMed Central Ltd
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
A user-centred approach to developing bWell, a mobile app for arm and shoulder exercises after breast cancer treatment
Purpose: The study aim was to develop a mobile application (app) supported by user preferences to optimise self-management of arm and shoulder exercises for upper-limb dysfunction (ULD) after breast cancer treatment.
Methods: Focus groups with breast cancer patients were held to identify user needs and requirements. Behaviour change techniques were explored by researchers and discussed during the focus groups. Concepts for content were identified by thematic analysis. A rapid review was conducted to inform the exercise programme. Preliminary testing was carried out to obtain user feedback from breast cancer patients who used the app for 8 weeks post-surgery.
Results: Breast cancer patients’ experiences with ULD and exercise advice and routines varied widely. They identified and prioritised several app features: tailored information, video demonstrations of the exercises, push notifications, and tracking and progress features. An evidence-based programme was developed with a physiotherapist with progressive exercises for passive and active mobilisation, stretching and strengthening. The exercise demonstration videos were filmed with a breast cancer patient. Early user testing demonstrated ease of use, and clear and motivating app content.
Conclusions: bWell, a novel app for arm and shoulder exercises was developed by breast cancer patients, health care professionals and academics. Further research is warranted to confirm its clinical effectiveness.
Implications for Cancer Survivors: Mobile health has great potential to provide patients with information specific to their needs. bWell is a promising way to support breast cancer patients with exercise routines after treatment and may improve future self-management of clinical care
Vocal Learning and Auditory-Vocal Feedback
Vocal learning is usually studied in songbirds and humans, species that can form auditory templates by listening to acoustic models and then learn to vocalize to match the template. Most other species are thought to develop vocalizations without auditory feedback. However, auditory input influences the acoustic structure of vocalizations in a broad distribution of birds and mammals. Vocalizations are dened here as sounds generated by forcing air past vibrating membranes. A vocal motor program may generate vocalizations such as crying or laughter, but auditory feedback may be required for matching precise acoustic features of vocalizations. This chapter discriminates limited vocal learning, which uses auditory input to fine-tune acoustic features of an inherited auditory template, from complex vocal learning, in which novel sounds are learned by matching a learned auditory template. Two or three songbird taxa and four or ve mammalian taxa are known for complex vocal learning. A broader range of mammals converge in the acoustic structure of vocalizations when in socially interacting groups, which qualifies as limited vocal learning. All birds and mammals tested use auditory-vocal feedback to adjust their vocalizations to compensate for the effects of noise, and many species modulate their signals as the costs and benefits of communicating vary. This chapter asks whether some auditory-vocal feedback may have provided neural substrates for the evolution of vocal learning. Progress will require more precise definitions of different forms of vocal learning, broad comparative review of their presence and absence, and behavioral and neurobiological investigations into the mechanisms underlying the skills.PostprintPeer reviewe
Comparative Analysis of Dengue and Zika Outbreaks Reveals Differences by Setting and Virus.
The pacific islands of Micronesia have experienced several outbreaks of mosquito-borne diseases over the past decade. In outbreaks on small islands, the susceptible population is usually well defined, and there is no co-circulation of pathogens. Because of this, analysing such outbreaks can be useful for understanding the transmission dynamics of the pathogens involved, and particularly so for yet understudied pathogens such as Zika virus. Here, we compared three outbreaks of dengue and Zika virus in two different island settings in Micronesia, the Yap Main Islands and Fais, using a mathematical model of transmission dynamics and making full use of commonalities in disease and setting between the outbreaks. We found that the estimated reproduction numbers for Zika and dengue were similar when considered in the same setting, but that, conversely, reproduction number for the same disease can vary considerably by setting. On the Yap Main Islands, we estimated a reproduction number of 8.0-16 (95% Credible Interval (CI)) for the dengue outbreak and 4.8-14 (95% CI) for the Zika outbreak, whereas for the dengue outbreak on Fais our estimate was 28-102 (95% CI). We further found that the proportion of cases of Zika reported was smaller (95% CI 1.4%-1.9%) than that of dengue (95% CI: 47%-61%). We confirmed these results in extensive sensitivity analysis. They suggest that models for dengue transmission can be useful for estimating the predicted dynamics of Zika transmission, but care must be taken when extrapolating findings from one setting to another
Atypical Mg-poor Milky Way Field Stars with Globular Cluster Second-generation-like Chemical Patterns
We report the peculiar chemical abundance patterns of 11 atypical Milky Way (MW) field red giant stars observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE). These atypical giants exhibit strong Al and N enhancements accompanied by C and Mg depletions, strikingly similar to those observed in the so-called second-generation (SG) stars of globular clusters (GCs). Remarkably, we find low Mg abundances ([Mg/Fe] < 0.0) together with strong Al and N overabundances in the majority (5/7) of the metal-rich ([Fe/H] gsim −1.0) sample stars, which is at odds with actual observations of SG stars in Galactic GCs of similar metallicities. This chemical pattern is unique and unprecedented among MW stars, posing urgent questions about its origin. These atypical stars could be former SG stars of dissolved GCs formed with intrinsically lower abundances of Mg and enriched Al (subsequently self-polluted by massive AGB stars) or the result of exotic binary systems. We speculate that the stars Mg-deficiency as well as the orbital properties suggest that they could have an extragalactic origin. This discovery should guide future dedicated spectroscopic searches of atypical stellar chemical patterns in our Galaxy, a fundamental step forward to understanding the Galactic formation and evolution
Transcriptomes and expression profiling of deep-sea corals from the Red Sea provide insight into the biology of azooxanthellate corals
Despite the importance of deep-sea corals, our current understanding of their ecology and evolutionis limited due to difficulties in sampling and studying deep-sea environments. Moreover, a recent reevaluation of habitat limitations has been suggested after characterization of deep-sea corals in the Red Sea, where they live at temperatures of above 20 °C at low oxygen concentrations. To gain further insight into the biology of deep-sea corals, we produced reference transcriptomes and studied gene expression of three deep-sea coral species from the Red Sea, i.e. Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. Our analyses suggest that deep-sea coral employ mitochondrial hypometabolism and anaerobic glycolysis to manage low oxygen conditions present in the Red Sea. Notably, we found expression of genes related to surface cilia motion that presumably enhance small particle transport rates in the oligotrophic deep-sea environment. This is the first study to characterize transcriptomes and in situ gene expression for deep-sea corals. Our work offers several mechanisms by which deep-sea corals might cope with the distinct environmental conditions present in the Red Sea. As such, our data provides direction for future research and further insight to organismal response of deep sea coral to environmental change and ocean warming.Tis work was supported by King Abdullah University of Science and Technology
(KAUST), baseline funds to CRV and Center Competitive Funding (CCF) Program FCC/1/1973-18-01
- …
