420 research outputs found

    Perturbations induced by a molecular cloud on the young stellar disc in the Galactic Centre

    Full text link
    The Galactic centre (GC) is a crowded environment: observations have revealed the presence of (molecular, atomic and ionized) gas, of a cusp of late-type stars, and of ~100 early-type stars, about half of which lying in one or possibly two discs. In this paper, we study the perturbations exerted on a thin stellar disc (with outer radius ~0.4 pc) by a molecular cloud that falls towards the GC and is disrupted by the supermassive black hole (SMBH). The initial conditions for the stellar disc were drawn from the results of previous simulations of molecular cloud infall and disruption in the SMBH potential. We find that most of the gas from the disrupted molecular cloud settles into a dense and irregular disc surrounding the SMBH. If the gas disc and the stellar disc are slightly misaligned (~5-20 deg), the precession of the stellar orbits induced by the gas disc significantly increases the inclinations of the stellar orbits (by a factor of ~3-5 in 1.5 Myr) with respect to the normal vector to the disc. Furthermore, the distribution of orbit inclinations becomes significantly broader. These results might be the clue to explain the broad distribution of observed inclinations of the early-type stars with respect to the normal vector of the main disc. We discuss the implications for the possibility that fresh gas was accreted by the GC after the formation of the disc(s) of early-type stars.Comment: 12 pages, 12 figures, 2 tables, accepted for publication in MNRA

    Nonparametric Econometrics: The np Package

    Get PDF
    We describe the R np package via a series of applications that may be of interest to applied econometricians. The np package implements a variety of nonparametric and semiparametric kernel-based estimators that are popular among econometricians. There are also procedures for nonparametric tests of significance and consistent model specification tests for parametric mean regression models and parametric quantile regression models, among others. The np package focuses on kernel methods appropriate for the mix of continuous, discrete, and categorical data often found in applied settings. Data-driven methods of bandwidth selection are emphasized throughout, though we caution the user that data-driven bandwidth selection methods can be computationally demanding.

    SPHS: smoothed particle hydrodynamics with a higher order dissipation switch

    Get PDF
    We present a novel implementation of smoothed particle hydrodynamics that uses the spatial derivative of the velocity divergence as a higher order dissipation switch. Our switch - which is second order accurate - detects flow convergence before it occurs. If particle trajectories are going to cross, we switch on the usual SPH artificial viscosity, as well as conservative dissipation in all advected fluid quantities (e.g. the entropy). The viscosity and dissipation terms (that are numerical errors) are designed to ensure that all fluid quantities remain single valued as particles approach one another, to respect conservation laws, and to vanish on a given physical scale as the resolution is increased. SPHS alleviates a number of known problems with ‘classic' SPH, successfully resolving mixing, and recovering numerical convergence with increasing resolution. An additional key advantage is that - treating the particle mass similarly to the entropy - we are able to use multimass particles, giving significantly improved control over the refinement strategy. We present a wide range of code tests including the Sod shock tube, Sedov-Taylor blast wave, Kelvin-Helmholtz Instability, the ‘blob test' and some convergence tests. Our method performs well on all tests, giving good agreement with analytic expectation

    The properties of pre-stellar discs in isolated and multiple pre-stellar systems

    Get PDF
    We present high-resolution 3D smoothed particle hydrodynamics simulations of the formation and evolution of protostellar discs in a turbulent molecular cloud. Using a piecewise polytropic equation of state, we perform two sets of simulations. In both cases, we find that isolated systems undergo a fundamentally different evolution than members of binary or multiple systems. When formed, isolated systems must accrete mass and increase their specific angular momentum, leading to the formation of massive, extended discs, which undergo strong gravitational instabilities and are susceptible to disc fragmentation. Fragments with initial masses of 5.5, 7.4 and 12 Mjup are produced in our simulations. In binaries and small clusters, we observe that due to competition for material from the parent core, members do not accrete significant amounts of high specific angular momentum gas relative to isolated systems. We find that discs in multiple systems are strongly self-gravitating but that they are stable against fragmentation due to disc truncation and mass profile steeping by tides, accretion of high specific angular momentum gas by other members and angular momentum being redirected into members' orbits. In general, we expect disc fragmentation to be less likely in clusters and to be more a feature of isolated system

    The writing on the wall: the concealed communities of the East Yorkshire horselads

    Get PDF
    This paper examines the graffiti found within late nineteenth and early-twentieth century farm buildings in the Wolds of East Yorkshire. It suggests that the graffiti were created by a group of young men at the bottom of the social hierarchy - the horselads – and was one of the ways in which they constructed a distinctive sense of communal identity, at a particular stage in their lives. Whilst it tells us much about changing agricultural regimes and social structures, it also informs us about experiences and attitudes often hidden from official histories and biographies. In this way, the graffiti are argued to inform our understanding, not only of a concealed community, but also about their hidden histor

    Resolving mixing in smoothed particle hydrodynamics

    Get PDF
    Standard formulations of smoothed particle hydrodynamics (SPH) are unable to resolve mixing at fluid boundaries. We use an error and stability analysis of the generalized SPH equations of motion to prove that this is due to two distinct problems. The first is a leading order error in the momentum equation. This should decrease with an increasing neighbour number, but does not because numerical instabilities cause the kernel to be irregularly sampled. We identify two important instabilities: the clumping instability and the banding instability, and we show that both are cured by a suitable choice of kernel. The second problem is the local mixing instability (LMI). This occurs as particles attempt to mix on the kernel scale, but are unable to due to entropy conservation. The result is a pressure discontinuity at boundaries that pushes fluids of different entropies apart. We cure the LMI by using a weighted density estimate that ensures that pressures are single-valued throughout the flow. This also gives a better volume estimate for the particles, reducing errors in the continuity and momentum equations. We demonstrate mixing in our new optimized smoothed particle hydrodynamics (OSPH) scheme using a Kelvin-Helmholtz instability (KHI) test with a density contrast of 1:2, and the ‘blob test'- a 1:10 density ratio gas sphere in a wind tunnel - finding excellent agreement between OSPH and Eulerian code

    Photometric identification of blue horizontal branch stars

    Full text link
    We investigate the performance of some common machine learning techniques in identifying BHB stars from photometric data. To train the machine learning algorithms, we use previously published spectroscopic identifications of BHB stars from SDSS data. We investigate the performance of three different techniques, namely k nearest neighbour classification, kernel density estimation and a support vector machine (SVM). We discuss the performance of the methods in terms of both completeness and contamination. We discuss the prospect of trading off these values, achieving lower contamination at the expense of lower completeness, by adjusting probability thresholds for the classification. We also discuss the role of prior probabilities in the classification performance, and we assess via simulations the reliability of the dataset used for training. Overall it seems that no-prior gives the best completeness, but adopting a prior lowers the contamination. We find that the SVM generally delivers the lowest contamination for a given level of completeness, and so is our method of choice. Finally, we classify a large sample of SDSS DR7 photometry using the SVM trained on the spectroscopic sample. We identify 27,074 probable BHB stars out of a sample of 294,652 stars. We derive photometric parallaxes and demonstrate that our results are reasonable by comparing to known distances for a selection of globular clusters. We attach our classifications, including probabilities, as an electronic table, so that they can be used either directly as a BHB star catalogue, or as priors to a spectroscopic or other classification method. We also provide our final models so that they can be directly applied to new data.Comment: To appear in A&A. 19 pages, 22 figures. Tables 7, A3 and A4 available electronically onlin

    On The Possibility of Enrichment and Differentiation in Gas Giants During Birth by Disk Instability

    Full text link
    We investigate the coupling between rock-size solids and gas during the formation of gas giant planets by disk fragmentation in the outer regions of massive disks. In this study, we use three-dimensional radiative hydrodynamics simulations and model solids as a spatial distribution of particles. We assume that half of the total solid fraction is in small grains and half in large solids. The former are perfectly entrained with the gas and set the opacity in the disk, while the latter are allowed to respond to gas drag forces, with the back reaction on the gas taken into account. To explore the maximum effects of gas-solid interactions, we first consider 10cm-size particles. We then compare these results to a simulation with 1 km-size particles, which explores the low-drag regime. We show that (1) disk instability planets have the potential to form large cores due to aerodynamic capturing of rock-size solids in spiral arms before fragmentation; (2) that temporary clumps can concentrate tens of MM_{\oplus} of solids in very localized regions before clump disruption; (3) that the formation of permanent clumps, even in the outer disk, is dependent on the grain-size distribution, i.e., the opacity; (4) that nonaxisymmetric structure in the disk can create disk regions that have a solids-to-gas ratio greater than unity; (5) that the solid distribution may affect the fragmentation process; (6) that proto-gas giants and proto-brown dwarfs can start as differentiated objects prior to the H2_2 collapse phase; (7) that spiral arms in a gravitationally unstable disk are able to stop the inward drift of rock-size solids, even redistributing them to larger radii; and, (8) that large solids can form spiral arms that are offset from the gaseous spiral arms. We conclude that planet embryo formation can be strongly affected by the growth of solids during the earliest stages of disk accretion.Comment: Accepted by ApJ. 55 pages including 24 figures. In response to comments from the referee, we have included a new simulation with km-size objects and have revised some discussions and interpretations. Major conclusions remain unchanged, and new conclusions have been added in response to the new ru
    corecore