3,377 research outputs found

    Structural sizing considerations for large space structures

    Get PDF
    A number of missions for the space shuttle were proposed which involve placing large truss platforms on-orbit. These platforms range in size from tens of meters in span for reflector application to several thousand meters for solar power collector application. These proposed sizes and the operational requirements considered are unconventional in comparison to Earthbound structures and little information exists concerning efficient proportions of the structural elements forming the framework of the platforms. Such proportions are of major concern because they have a strong influence on the packaging efficiency and, thus, the transportation effectiveness of the shuttle. The present study is undertaken to: (1) identify efficient ranges of application of deployable and erectable platforms configured for shuttle transport to orbit, and (2) determine sensitivity to key parameters of minimum mass deployable and erectable platform designs

    Deployable and erectable concepts for large spacecraft

    Get PDF
    Computerized structural sizing techniques were used to determine structural proportions of minimum mass tetrahedral truss platforms designed for low Earth and geosynchronous orbit. Optimum (minimum mass) deployable and erectable, hexagonal shaped spacecraft are sized to satisfy multiple design requirements and constraints. Strut dimensions characterizing minimum mass designs are found to be significantly more slender than those conventionally used for structural applications. Comparison studies show that mass characteristics of deployable and erectable platforms are approximately equal and that the shuttle flights required by deployable trusses become excessive above certain critical stiffness values. Recent investigations of eractable strut assembly are reviewed. Initial erectable structure assembly experiments show that a pair of astronauts can achieve EVA assembly times of 2-5 min/strut and studies indicate that an automated assembler can achieve times of less than 1 min/strut for around the clock operation

    A new method for atmospheric detection of the CH3O2 radical

    Get PDF
    A new method for measurement of the methyl peroxy (CH3O2) radical has been developed using the conversion of CH3O2 into CH3O by excess NO with subsequent detection of CH3O by fluorescence assay by gas expansion (FAGE) with laser excitation at ca. 298 nm. The method can also directly detect CH3O, when no nitric oxide is added. Laboratory calibrations were performed to characterise the FAGE instrument sensitivity using the conventional radical source employed in OH calibration with conversion of a known concentration of OH into CH3O2 via reaction with CH4 in the presence of O2. Detection limits of 3.8 × 108 and 3.0 × 108 molecule cm−3 were determined for CH3O2 and CH3O respectively for a signal-to-noise ratio of 2 and 5 min averaging time. Averaging over 1 h reduces the detection limit for CH3O2 to 1.1 × 108 molecule cm−3, which is comparable to atmospheric concentrations. The kinetics of the second-order decay of CH3O2 via its self-reaction were observed in HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry) at 295 K and 1 bar and used as an alternative method of calibration to obtain a calibration constant with overlapping error limits at the 1σ level with the result of the conventional method of calibration. The overall uncertainties of the two methods of calibrations are similar – 15 % for the kinetic method and 17 % for the conventional method – and are discussed in detail. The capability to quantitatively measure CH3O in chamber experiments is demonstrated via observation in HIRAC of CH3O formed as a product of the CH3O2 self-reaction

    Space tug propulsion system failure mode, effects and criticality analysis

    Get PDF
    For purposes of the study, the propulsion system was considered as consisting of the following: (1) main engine system, (2) auxiliary propulsion system, (3) pneumatic system, (4) hydrogen feed, fill, drain and vent system, (5) oxygen feed, fill, drain and vent system, and (6) helium reentry purge system. Each component was critically examined to identify possible failure modes and the subsequent effect on mission success. Each space tug mission consists of three phases: launch to separation from shuttle, separation to redocking, and redocking to landing. The analysis considered the results of failure of a component during each phase of the mission. After the failure modes of each component were tabulated, those components whose failure would result in possible or certain loss of mission or inability to return the Tug to ground were identified as critical components and a criticality number determined for each. The criticality number of a component denotes the number of mission failures in one million missions due to the loss of that component. A total of 68 components were identified as critical with criticality numbers ranging from 1 to 2990

    Tests of an alternate mobile transporter and extravehicular activity assembly procedure for the Space Station Freedom truss

    Get PDF
    Results are presented from a ground test program of an alternate mobile transporter (MT) concept and extravehicular activity (EVA) assembly procedure for the Space Station Freedom (SSF) truss keel. A three-bay orthogonal tetrahedral truss beam consisting of 44 2-in-diameter struts and 16 nodes was assembled repeatedly in neutral buoyancy by pairs of pressure-suited test subjects working from astronaut positioning devices (APD's) on the MT. The truss bays were cubic with edges 15 ft long. All the truss joint hardware was found to be EVA compatible. The average unit assembly time for a single pair of experienced test subjects was 27.6 sec/strut, which is about half the time derived from other SSF truss assembly tests. A concept for integration of utility trays during truss assembly is introduced and demonstrated in the assembly tests. The concept, which requires minimal EVA handling of the trays, is shown to have little impact on overall assembly time. The results of these tests indicate that by using an MT equipped with APD's, rapid EVA assembly of a space station-size truss structure can be expected

    First Report of the Alfalfa Blotch Leafminer (Diptera: Agromyzidae), and Selected Parasites (Hymenoptera: Eulophidae) in Minnesota and Wisconsin, USA

    Get PDF
    Alfalfa blotch leafminer, Agromyza frontella, has been a serious pest of alfalfa, Medicago sativa, in the northeastern U.S. and in eastern Ontario, Canada. Until recently, the western edge of the A. frontella distribution in the U.S. was limited to eastern Ohio. We document for the first time, the occurrence of A. frontella in Minnesota and Wisconsin. Alfalfa stems damaged by A. frontella, based on adult feeding punctures, obvious blotched leafmining or the presence of larvae, were first found in 3 northern Minnesota coun­ties during October, 1994. Infested counties included Lake of the Woods, Cook and Lake, all bordering western Ontario, Canada. In 1995, A. frontella was again found in Cook and Lake counties, where 99-100% of the stems, and 18-35% of the trifoliates/stem, contained larvae or exhibited obvious feeding damage. In 1996, following a more expanded survey, a total of 11 and 5 counties, in Minnesota and Wisconsin, respectively, showed some level of A. frontella feeding damage (stem samples ranged from \u3c5 to 100% infested). Based on additional counties surveyed 11 October, 1996, where A. frontella was not found, we now have a reasonable estimate of the southern edge of the distribution in Minnesota and Wisconsin. A total of 2 and 6 A. frontella adults were identified from sweep-net samples taken from fields with obvious feeding damage during 1995 (Lake Co.) and 1996 (Cook Co,), respectively. Three eulophid (Hymenoptera) parasites were reared from A. frontella-infested alfalfa stems collected during October, 1994 in Cook Co., Minn., including: Diglyphus begini, D. pulchripes, and Diglyphus sp., prob. isaea, all of which are new records. Our hypothesis is that A. frontella moved into Minnesota from Ontario Canada, via alfalfa hay purchased by northern Minnesota growers

    Langevin Thermostat for Rigid Body Dynamics

    Full text link
    We present a new method for isothermal rigid body simulations using the quaternion representation and Langevin dynamics. It can be combined with the traditional Langevin or gradient (Brownian) dynamics for the translational degrees of freedom to correctly sample the NVT distribution in a simulation of rigid molecules. We propose simple, quasi-symplectic second-order numerical integrators and test their performance on the TIP4P model of water. We also investigate the optimal choice of thermostat parameters.Comment: 15 pages, 13 figures, 1 tabl

    Finding the Center of Mass of a Soft Spring

    Full text link
    This article shows how to use calculus to find the center of mass position of a soft cylindrical helical spring that is suspended vertically. The spring is non-uniformly stretched by the action of gravity. A general expression for the vertical position of the center of mass is obtained.Comment: LaTeX, 7 pages, 2 figures. Minor changes to agree with published versio

    New Langevin and Gradient Thermostats for Rigid Body Dynamics

    Get PDF
    We introduce two new thermostats, one of Langevin type and one of gradient (Brownian) type, for rigid body dynamics. We formulate rotation using the quaternion representation of angular coordinates; both thermostats preserve the unit length of quaternions. The Langevin thermostat also ensures that the conjugate angular momenta stay within the tangent space of the quaternion coordinates, as required by the Hamiltonian dynamics of rigid bodies. We have constructed three geometric numerical integrators for the Langevin thermostat and one for the gradient thermostat. The numerical integrators reflect key properties of the thermostats themselves. Namely, they all preserve the unit length of quaternions, automatically, without the need of a projection onto the unit sphere. The Langevin integrators also ensure that the angular momenta remain within the tangent space of the quaternion coordinates. The Langevin integrators are quasi-symplectic and of weak order two. The numerical method for the gradient thermostat is of weak order one. Its construction exploits ideas of Lie-group type integrators for differential equations on manifolds. We numerically compare the discretization errors of the Langevin integrators, as well as the efficiency of the gradient integrator compared to the Langevin ones when used in the simulation of rigid TIP4P water model with smoothly truncated electrostatic interactions. We observe that the gradient integrator is computationally less efficient than the Langevin integrators. We also compare the relative accuracy of the Langevin integrators in evaluating various static quantities and give recommendations as to the choice of an appropriate integrator.Comment: 16 pages, 4 figure
    corecore