4,185 research outputs found

    AzTEC 1.1 mm Observations of the MBM12 Molecular Cloud

    Get PDF
    We present 1.1 mm observations of the dust continuum emission from the MBM12 high-latitude molecular cloud observed with the Astronomical Thermal Emission Camera (AzTEC) mounted on the James Clerk Maxwell Telescope on Mauna Kea, Hawaii. We surveyed a 6.34 deg2^2 centered on MBM12, making this the largest area that has ever been surveyed in this region with submillimeter and millimeter telescopes. Eight secure individual sources were detected with a signal-to-noise ratio of over 4.4. These eight AzTEC sources can be considered to be real astronomical objects compared to the other candidates based on calculations of the false detection rate. The distribution of the detected 1.1 mm sources or compact 1.1 mm peaks is spatially anti-correlated with that of the 100 micronm emission and the 12^{12}CO emission. We detected the 1.1 mm dust continuum emitting sources associated with two classical T Tauri stars, LkHalpha262 and LkHalpha264. Observations of spectral energy distributions (SEDs) indicate that LkHalpha262 is likely to be Class II (pre-main-sequence star), but there are also indications that it could be a late Class I (protostar). A flared disk and a bipolar cavity in the models of Class I sources lead to more complicated SEDs. From the present AzTEC observations of the MBM12 region, it appears that other sources detected with AzTEC are likely to be extragalactic and located behind MBM12. Some of these have radio counterparts and their star formation rates are derived from a fit of the SEDs to the photometric evolution of galaxies in which the effects of a dusty interstellar medium have been included.Comment: 8 pages, 6 figures, The Astrophysical Journal, in pres

    Overview of the spectrometer optical fiber feed for the Habitable-zone Planet Finder

    Full text link
    The Habitable-zone Planet Finder (HPF) is a highly stabilized fiber fed precision radial velocity (RV) spectrograph working in the Near Infrared (NIR): 810 - 1280 nm . In this paper we present an overview of the preparation of the optical fibers for HPF. The entire fiber train from the telescope focus down to the cryostat is detailed. We also discuss the fiber polishing, splicing and its integration into the instrument using a fused silica puck. HPF was designed to be able to operate in two modes, High Resolution (HR- the only mode mode currently commissioned) and High Efficiency (HE). We discuss these fiber heads and the procedure we adopted to attach the slit on to the HR fibers.Comment: Presented at 2018 SPIE Astronomical Telescopes + Instrumentation, Austin, Texas, USA. 18 pages, 25 figures, and 2 table

    Clouds in the atmospheres of extrasolar planets. II. Thermal emission spectra of Earth-like planets influenced by low and high-level clouds

    Full text link
    We study the impact of multi-layered clouds (low-level water and high-level ice clouds) on the thermal emission spectra of Earth-like planets orbiting different types of stars. Clouds have an important influence on such planetary emission spectra due to their wavelength dependent absorption and scattering properties. We also investigate the influence of clouds on the ability to derive information about planetary surface temperatures from low-resolution spectra.Comment: accepted for publication in A&

    Low Mass Stars and Substellar Objects in the NGC 1333 Molecular Cloud

    Full text link
    We present the results of near-infrared imaging and low-resolution near- infrared spectroscopy of low mass objects in the NGC 1333 molecular cloud. A JHK survey of an 11.4' x 11.7' area of the northern cluster was conducted to a sensitivity of K < 16 mag. Using near-infrared magnitudes and colors from this and previously published surveys, twenty-five brown dwarf candidates were selected toward the high extinction cloud core. Spectra in the K band were obtained and comparisons of the depths of water vapor absorption bands in our candidate objects with a grid of dwarf,subgiant, and giant standards were made to derive spectral types. These data were then used to derive effective temperatures and stellar luminosities which, when combined with theoretical tracks and isochrones for pre-main sequence objects, resulted in estimates for their masses and ages. The models suggest a median age for the sample of < 1 Myr with substellar masses for at least 9 of the candidates including the x-ray flare source ASR 24. Surface gravities have been estimated for the brown dwarf candidates and, for a given spectral type,found to resemble more closely dwarfs than giants. Using the near-infrared imaging data and age estimates from the spectroscopic sample, an extinction-limited sample in the northern cluster was defined. Consistent with recent studies of other young clusters, this sample exhibits an accretion disk frequency of 0.75 +-0.20 and a mass spectrum slope across the hydrogen-burning limit of alpha < 1.6 where dN/dM ~ M^-(alpha).Comment: 22 postscript pages, 12 postscript figures, and 3 postscript tables. Accepted for publication in the Astronomical Journal (February, 2004

    The Electric Charge of Neutrinos and Plasmon Decay

    Full text link
    By using both thermal field theory and a somewhat more intuitive method, we define the electric charge as well as the charge radius of neutrinos propagating inside a plasma. We show that electron neutrinos acquire a charge radius of order 6.5×1016\sim 6.5 \times 10^{-16} cm, regardless of the properties of the medium. Then, we compute the rate of plasmon decay which such an electric charge or a charge radius implies. Taking into account the relativistic effects of the degenerate electron gas, we compare our results to various approximations as well as to recent calculations and determine the regimes where the electric charge or the charge radius does mediate the decay of plasmons. Finally, we discuss the stellar limits on any anomalous charge radius of neutrinos.Comment: 19pp, 4 figures (available upon request), CERN-TH-7076/9

    A Prediction of Brown Dwarfs in Ultracold Molecular Gas

    Get PDF
    A recent model for the stellar initial mass function (IMF), in which the stellar masses are randomly sampled down to the thermal Jeans mass from hierarchically structured pre-stellar clouds, predicts that regions of ultra-cold CO gas, such as those recently found in nearby galaxies by Allen and collaborators, should make an abundance of Brown Dwarfs with relatively few normal stars. This result comes from the low value of the thermal Jeans mass, considering that the hierarchical cloud model always gives the Salpeter IMF slope above this lower mass limit. The ultracold CO clouds in the inner disk of M31 have T~3K and pressures that are probably 10 times higher than in the solar neighborhood. This gives a mass at the peak of the IMF equal to 0.01 Msun, well below the Brown Dwarf limit of 0.08 Msun. Using a functional approximation to the IMF, the ultracold clouds would have 50% of the star-like mass and 90% of the objects below the Brown Dwarf limit. The brightest of the Brown Dwarfs in M31 should have an apparent, extinction-corrected K-band magnitude of ~21 mag in their pre-main sequence phase.Comment: 13 pages, 2 figures, to be published in Astrophysical Journal, Vol 522, September 10, 199

    The SDSS-III APOGEE Radial Velocity Survey of M dwarfs I: Description of Survey and Science Goals

    Get PDF
    We are carrying out a large ancillary program with the SDSS-III, using the fiber-fed multi-object NIR APOGEE spectrograph, to obtain high-resolution H-band spectra of more than 1200 M dwarfs. These observations are used to measure spectroscopic rotational velocities, radial velocities, physical stellar parameters, and variability of the target stars. Here, we describe the target selection for this survey and results from the first year of scientific observations based on spectra that is publicly available in the SDSS-III DR10 data release. As part of this paper we present RVs and vsini of over 200 M dwarfs, with a vsini precision of ~2 km/s and a measurement floor at vsini = 4 km/s. This survey significantly increases the number of M dwarfs studied for vsini and RV variability (at ~100-200 m/s), and will advance the target selection for planned RV and photometric searches for low mass exoplanets around M dwarfs, such as HPF, CARMENES, and TESS. Multiple epochs of radial velocity observations enable us to identify short period binaries, and AO imaging of a subset of stars enables the detection of possible stellar companions at larger separations. The high-resolution H-band APOGEE spectra provide the opportunity to measure physical stellar parameters such as effective temperatures and metallicities for many of these stars. At the culmination of this survey, we will have obtained multi-epoch spectra and RVs for over 1400 stars spanning spectral types of M0-L0, providing the largest set of NIR M dwarf spectra at high resolution, and more than doubling the number of known spectroscopic vsini values for M dwarfs. Furthermore, by modeling telluric lines to correct for small instrumental radial velocity shifts, we hope to achieve a relative velocity precision floor of 50 m/s for bright M dwarfs. We present preliminary results of this telluric modeling technique in this paper.Comment: Submitted to Astronomical Journa

    Extinction Maps Toward The Milky Way Bulge: Two-Dimensional And Three-Dimensional Tests With APOGEE

    Get PDF
    Galactic interstellar extinction maps are powerful and necessary tools for Milky Way structure and stellar population analyses, particularly toward the heavily reddened bulge and in the midplane. However, due to the difficulty of obtaining reliable extinction measures and distances for a large number of stars that are independent of these maps, tests of their accuracy and systematics have been limited. Our goal is to assess a variety of photometric stellar extinction estimates, including both two-dimensional and three-dimensional extinction maps, using independent extinction measures based on a large spectroscopic sample of stars toward the Milky Way bulge. We employ stellar atmospheric parameters derived from high-resolution H-band Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectra, combined with theoretical stellar isochrones, to calculate line-of-sight extinction and distances for a sample of more than 2400 giants toward the Milky Way bulge. We compare these extinction values to those predicted by individual near-IR and near+mid-IR stellar colors, two-dimensional bulge extinction maps, and three-dimensional extinction maps. The long baseline, near+mid-IR stellar colors are, on average, the most accurate predictors of the APOGEE extinction estimates, and the two-dimensional and three-dimensional extinction maps derived from different stellar populations along different sightlines show varying degrees of reliability. We present the results of all of the comparisons and discuss reasons for the observed discrepancies. We also demonstrate how the particular stellar atmospheric models adopted can have a strong impact on this type of analysis, and discuss related caveats.NSF Astronomy & Astrophysics Postdoctoral Fellowship AST-1203017Physics Frontier Center/Joint Institute for Nuclear Astrophysics (JINA) PHY 08-22648U.S. National Science FoundationAlfred P. Sloan FoundationParticipating InstitutionsU.S. Department of Energy Office of Science ANR-12-BS05-0015-01Astronom
    corecore