193 research outputs found
Can sexual selection drive female life histories? A comparative study on Galliform birds
Sexual selection is an important driver of many of the most spectacular morphological traits that we find in the animal kingdom (for example see Andersson, 1994). As such, sexual selection is most often emphasized as
Effects of rapid prey evolution on predator-prey cycles
We study the qualitative properties of population cycles in a predator-prey
system where genetic variability allows contemporary rapid evolution of the
prey. Previous numerical studies have found that prey evolution in response to
changing predation risk can have major quantitative and qualitative effects on
predator-prey cycles, including: (i) large increases in cycle period, (ii)
changes in phase relations (so that predator and prey are cycling exactly out
of phase, rather than the classical quarter-period phase lag), and (iii)
"cryptic" cycles in which total prey density remains nearly constant while
predator density and prey traits cycle. Here we focus on a chemostat model
motivated by our experimental system [Fussmann et al. 2000,Yoshida et al. 2003]
with algae (prey) and rotifers (predators), in which the prey exhibit rapid
evolution in their level of defense against predation. We show that the effects
of rapid prey evolution are robust and general, and furthermore that they occur
in a specific but biologically relevant region of parameter space: when traits
that greatly reduce predation risk are relatively cheap (in terms of reductions
in other fitness components), when there is coexistence between the two prey
types and the predator, and when the interaction between predators and
undefended prey alone would produce cycles. Because defense has been shown to
be inexpensive, even cost-free, in a number of systems [Andersson and Levin
1999, Gagneux et al. 2006,Yoshida et al. 2004], our discoveries may well be
reproduced in other model systems, and in nature. Finally, some of our key
results are extended to a general model in which functional forms for the
predation rate and prey birth rate are not specified.Comment: 35 pages, 8 figure
Observation of Scaling Violations in Scaled Momentum Distributions at HERA
Charged particle production has been measured in deep inelastic scattering
(DIS) events over a large range of and using the ZEUS detector. The
evolution of the scaled momentum, , with in the range 10 to 1280
, has been investigated in the current fragmentation region of the Breit
frame. The results show clear evidence, in a single experiment, for scaling
violations in scaled momenta as a function of .Comment: 21 pages including 4 figures, to be published in Physics Letters B.
Two references adde
D* Production in Deep Inelastic Scattering at HERA
This paper presents measurements of D^{*\pm} production in deep inelastic
scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The
data have been taken with the ZEUS detector at HERA. The decay channel
(+ c.c.) has been used in the study. The
cross section for inclusive D^{*\pm} production with
and is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region
{ GeV and }. Differential cross
sections as functions of p_T(D^{*\pm}), and are
compared with next-to-leading order QCD calculations based on the photon-gluon
fusion production mechanism. After an extrapolation of the cross section to the
full kinematic region in p_T(D^{*\pm}) and (D^{*\pm}), the charm
contribution to the proton structure function is
determined for Bjorken between 2 10 and 5 10.Comment: 17 pages including 4 figure
Forward jet production in deep inelastic ep scattering and low-x parton dynamics at HERA
Differential inclusive jet cross sections in neutral current deep inelastic
ep scattering have been measured with the ZEUS detector. Three phase-space
regions have been selected in order to study parton dynamics where the effects
of BFKL evolution might be present. The measurements have been compared to the
predictions of leading-logarithm parton shower Monte Carlo models and
fixed-order perturbative QCD calculations. In the forward region, QCD
calculations at order alpha_s^1 underestimate the data up to an order of
magnitude at low x. An improved description of the data in this region is
obtained by including QCD corrections at order alpha_s^2, which account for the
lowest-order t-channel gluon-exchange diagrams, highlighting the importance of
such terms in parton dynamics at low x.Comment: 25 pages, 4 figure
Technoscience and the modernization of freshwater fisheries assessment and management
Inland fisheries assessment and management are challenging given the inherent com-
plexity of working in diverse habitats (e.g., rivers, lakes, wetlands) that are dynamic
on organisms that are often cryptic and where fishers are often highly mobile. Yet,
technoscience is offering new tools that have the potential to reimagine how inland
fisheries are assessed and managed. So-called ‘‘technoscience’’ refers to instances in
which science and technology unfurl together, offering novel ways of spurring and
achieving meaningful change. This paper considers the role of technoscience and its
potential for modernizing the assessment and management of inland fisheries. It first
explores technoscience and its potential benefits, followed by presentation of a series
of synopses that explore the application (both successes and challenges) of new tech-
nologies such as environmental DNA (eDNA), genomics, electronic tags, drones, phone
apps, iEcology, and artificial intelligence to assessment and management. The paper
also considers the challenges and barriers that exist in adopting new technologies. The
paper concludes with a provocative assessment of the potential of technoscience to
reform and modernize inland fisheries assessment and management. Although these
tools are increasingly being embraced, there is a lack of platforms for aggregating these
data streams and providing managers with actionable information in a timely manner.
The ideas presented here should serve as a catalyst for beginning to work collectively
and collaboratively towards fisheries assessment and management systems that harness
the power of technology and serve to modernize inland fisheries management. Such
transformation is urgently needed given the dynamic nature of environmental change,
the evolving threat matrix facing inland waters, and the complex behavior of fishers.
Quite simply, a dynamic world demands dynamic fisheries management; technoscience
has made that within reach.publishedVersio
What the egg can tell about its hen: embryo development on the basis of Dynamic Energy Budgets.
The energy cost of offspring is important in the conversion of resources allocated to reproduction to numbers of offspring, and in obtaining energy budget parameters from quantities that are easy to measure. An efficient numerical procedure is presented to obtain this cost for eggs and foetusses in the context of the dynamic energy budget theory, which specifies that birth occurs when maturity exceeds a threshold value and maternal effects determine the reserve density at birth. This paper extends previous work to arbitrary values of the ratio of the maturity and somatic maintenance costs. I discuss the body size scaling implications for the relative size and age at birth and conclude that the size at birth, contrary to the age at birth, covaries with the maintenance ratio. Apart from evolutionary adaptation of the maturity at birth, this covariation might explain some of the observed scatter in the relative length at birth. The theory can be used to evaluate the effects of the separation of cells in e.g. the two-cell stage of embryonic development, and of the removal of initial egg mass. If cell separation hardly affects energy parameters, body size scaling relationships imply that cell separation can only occur successfully in species with sufficiently large maximum body length (as adult); i.e. some two times that of Daphnia magna. Toxic compounds that increase the cost of synthesis of structure, decrease the allocation to reproduction indirectly via the life cycle, because food uptake is linked to size. They can also decrease the egg size, however, such that the reproduction rate is stimulated at low concentrations. The present theory offers a possible explanation for this well-known phenomenon. © 2008 Springer-Verlag
Measurement of the reaction in deep inelastic scattering at HERA
The production of phi mesons in the reaction e(+)p --> e(+)phi p (phi --> K+K-), for 7 phi p cross section rises strongly with W. This behaviour is similar to that previously found for the gamma*p --> rho(0)p cross section. This strong dependence cannot be explained by production through soft pomeron exchange, It is, however, consistent with perturbative QCD expectations, where it reflects the rise of the gluon momentum density in the proton at small x. The ratio of sigma(phi)/sigma(rho(0)), which has previously been determined by ZEUS to be 0.065 +/- 0.013 (stat.) in photoproduction at a mean W of 70 GeV, is measured to be 0.18 +/- 0.05 (stat.) +/- 0.03 (syst.) at a mean Q(2) of 12.3 GeV2 and mean W of approximate to 100 GeV and is thus approaching at large Q(2) the value of 2/9 predicted from the quark charges of the vector mesons and a flavour independent production mechanism
Observation of Events with an Energetic Forward Neutron in Deep Inelastic Scattering at HERA
In deep inelastic neutral current scattering of positrons and protons at the center of mass energy of 300 GeV, we observe, with the ZEUS detector, events with a high energy neutron produced at very small scattering angles with respect to the proton direction. The events constitute a fixed fraction of the deep inelastic, neutral current event sample independent of Bjorken x and Q2 in the range 3 · 10-4 \u3c xBJ \u3c 6 · 10-3 and 10 \u3c Q2 \u3c 100 GeV2
Measurements of the t(t)Overbar charge asymmetry using the dilepton decay channel in pp collisions at root s=7 TeV
The tt¯ charge asymmetry in proton-proton collisions at s√ = 7 TeV is measured using the dilepton decay channel (ee, e μ , or μμ ). The data correspond to a total integrated luminosity of 5.0 fb −1 , collected by the CMS experiment at the LHC. The tt and lepton charge asymmetries, defined as the differences in absolute values of the rapidities between the reconstructed top quarks and antiquarks and of the pseudorapidities between the positive and negative leptons, respectively, are measured to be A C = −0 . 010 ± 0 . 017 (stat . ) ± 0 . 008 (syst . ) and AlepC = 0 . 009 ± 0 . 010 (stat . ) ± 0 . 006 (syst . ). The lepton charge asymmetry is also measured as a function of the invariant mass, rapidity, and transverse momentum of the tt¯ system. All measurements are consistent with the expectations of the standard model
- …
