264 research outputs found
GERMLINE GAIN-OF-FUNCTION MUTATIONS of ALK DISRUPT CENTRAL NERVOUS SYSTEM DEVELOPMENT
International audienceNeuroblastoma (NB) is a frequent embryonal tumour of sympathetic ganglia and adrenals with extremely variable outcome. Recently, somatic amplification and gain-of-function mutations of the anaplastic lymphoma receptor tyrosine kinase (ALK, MIM 105590) gene, either somatic or germline, were identified in a significant proportion of NB cases. Here we report a novel syndromic presentation associating congenital NB with severe encephalopathy and abnormal shape of the brainstem on brain MRI in two unrelated sporadic cases harbouring de novo, germline, heterozygous ALK gene mutations. Both mutations are gain-of-function mutations that have been reported in NB and NB cell lines. These observations further illustrate the role of oncogenes in both tumour predisposition and normal development, and shed light on the pleiotropic and activity-dependent role of ALK in humans. More generally, missing germline mutations relative to the spectrum of somatic mutations reported for a given oncogene may be a reflection of severe effects during embryonic development, and may prompt mutation screening in patients with extreme phenotypes
Design and development of a complex narrative intervention delivered by text messages to reduce binge drinking among socially disadvantaged men
Background:
Socially disadvantaged men are at high risk of suffering from alcohol-related harm. Disadvantaged groups are less likely to engage with health promotion. There is a need for interventions that reach large numbers at low cost and which promote high levels of engagement with the behaviour change process. The aim of this study was to design a theoretically and empirically based text message intervention to reduce binge drinking by socially disadvantaged men.
Results:
Following MRC guidance, the intervention was developed in four stages. Stage 1 developed a detailed behaviour change strategy based on existing literature and theory from several areas. These included the psychological theory that would underpin the intervention, alcohol brief interventions, text message interventions, effective behaviour change techniques, narratives in behaviour change interventions and communication theory. In addition, formative research was carried out. A logic model was developed to depict the pathways between intervention inputs, processes and outcomes for behaviour change. Stage 2 created a narrative which illustrated and modelled key steps in the strategy. Stage 3 rendered the intervention into a series of text messages and ensured that appropriate behavioural change techniques were incorporated. Stage 4 revised the messages to ensure comprehensive coverage of the behaviour change strategy and coherence of the narrative. It also piloted the intervention and made final revisions to it.
Conclusions:
The structured, systematic approach to design created a narrative intervention which had a strong theoretical and empirical basis. The use of a narrative helped make the intervention realistic and allowed key behaviour change techniques to be modelled by characters. The narrative was intended to promote engagement with the intervention. The intervention was rendered into a series of short text messages, and subsequent piloting showed they were acceptable in the target group. Delivery of an intervention by text message offers a low-cost, low-demand method that can reach large numbers of people. This approach provides a framework for the design of behaviour change interventions which could be used for interventions to tackle other health behaviours
Maternal hypoxia decreases capillary supply and increases metabolic inefficiency leading to divergence in myocardial oxygen supply and demand
Maternal hypoxia is associated with a decrease in left ventricular capillary density while cardiac performance is preserved, implying a mismatch between metabolism and diffusive exchange. We hypothesised this requires a switch in substrate metabolism to maximise efficiency of ATP production from limited oxygen availability. Rat pups from pregnant females exposed to hypoxia (FIO2=0.12) at days 10-20 of pregnancy were grown to adulthood and working hearts perfused ex vivo. 14 C-labelled glucose and 3 H-palmitate were provided as substrates and metabolism quantified from recovery of 14CO2 and 3 H2O, respectively. Hearts of male offspring subjected to Maternal Hypoxia showed a 20% decrease in cardiac output (P<0.05), despite recording a 2-fold increase in glucose oxidation (P<0.01) and 2.5-fold increase (P<0.01) in palmitate oxidation. Addition of insulin to Maternal Hypoxic hearts, further increased glucose oxidation (P<0.01) and suppressed palmitate oxidation (P<0.05), suggesting preservation in insulin signalling in the heart. In vitro enzyme activity measurements showed that Maternal Hypoxia increased both total and the active component of cardiac pyruvate dehydrogenase (both P<0.01), although pyruvate dehydrogenase sensitivity to insulin was lost (NS), while citrate synthase activity declined by 30% (P<0.001) and acetyl-CoA carboxylase activity was unchanged by Maternal Hypoxia, indicating realignment of the metabolic machinery to optimise oxygen utilisation. Capillary density was quantified and oxygen diffusion characteristics examined, with calculated capillary domain area increased by 30% (P<0.001). Calculated metabolic efficiency decreased 4-fold (P<0.01) for Maternal Hypoxia hearts. Paradoxically, the decline in citrate synthase activity and increased metabolism suggest that the scope of individual mitochondria had declined, rendering the myocardium potentially more sensitive to metabolic stress. However, decreasing citrate synthase may be essential to preserve local PO2, minimising regions of hypoxia and hence maximising the area of myocardium able to preserve cardiac output following maternal hypoxia
Changes in cardiac substrate transporters and metabolic proteins mirror the metabolic shift in patients with aortic stenosis.
In the hypertrophied human heart, fatty acid metabolism is decreased and glucose utilisation is increased. We hypothesized that the sarcolemmal and mitochondrial proteins involved in these key metabolic pathways would mirror these changes, providing a mechanism to account for the modified metabolic flux measured in the human heart. Echocardiography was performed to assess in vivo hypertrophy and aortic valve impairment in patients with aortic stenosis (n = 18). Cardiac biopsies were obtained during valve replacement surgery, and used for western blotting to measure metabolic protein levels. Protein levels of the predominant fatty acid transporter, fatty acid translocase (FAT/CD36) correlated negatively with levels of the glucose transporters, GLUT1 and GLUT4. The decrease in FAT/CD36 was accompanied by decreases in the fatty acid binding proteins, FABPpm and H-FABP, the β-oxidation protein medium chain acyl-coenzyme A dehydrogenase, the Krebs cycle protein α-ketoglutarate dehydrogenase and the oxidative phosphorylation protein ATP synthase. FAT/CD36 and complex I of the electron transport chain were downregulated, whereas the glucose transporter GLUT4 was upregulated with increasing left ventricular mass index, a measure of cardiac hypertrophy. In conclusion, coordinated downregulation of sequential steps involved in fatty acid and oxidative metabolism occur in the human heart, accompanied by upregulation of the glucose transporters. The profile of the substrate transporters and metabolic proteins mirror the metabolic shift from fatty acid to glucose utilisation that occurs in vivo in the human heart
Arterial Tortuosity: An Imaging Biomarker of Childhood Stroke Pathogenesis?
Background and purposeArteriopathy is the leading cause of childhood arterial ischemic stroke. Mechanisms are poorly understood but may include inherent abnormalities of arterial structure. Extracranial dissection is associated with connective tissue disorders in adult stroke. Focal cerebral arteriopathy is a common syndrome where pathophysiology is unknown but may include intracranial dissection or transient cerebral arteriopathy. We aimed to quantify cerebral arterial tortuosity in childhood arterial ischemic stroke, hypothesizing increased tortuosity in dissection.MethodsChildren (1 month to 18 years) with arterial ischemic stroke were recruited within the Vascular Effects of Infection in Pediatric Stroke (VIPS) study with controls from the Calgary Pediatric Stroke Program. Objective, multi-investigator review defined diagnostic categories. A validated imaging software method calculated the mean arterial tortuosity of the major cerebral arteries using 3-dimensional time-of-flight magnetic resonance angiographic source images. Tortuosity of unaffected vessels was compared between children with dissection, transient cerebral arteriopathy, meningitis, moyamoya, cardioembolic strokes, and controls (ANOVA and post hoc Tukey). Trauma-related versus spontaneous dissection was compared (Student t test).ResultsOne hundred fifteen children were studied (median, 6.8 years; 43% women). Age and sex were similar across groups. Tortuosity means and variances were consistent with validation studies. Tortuosity in controls (1.346±0.074; n=15) was comparable with moyamoya (1.324±0.038; n=15; P=0.998), meningitis (1.348±0.052; n=11; P=0.989), and cardioembolic (1.379±0.056; n=27; P=0.190) cases. Tortuosity was higher in both extracranial dissection (1.404±0.084; n=22; P=0.021) and transient cerebral arteriopathy (1.390±0.040; n=27; P=0.001) children. Tortuosity was not different between traumatic versus spontaneous dissections (P=0.70).ConclusionsIn children with dissection and transient cerebral arteriopathy, cerebral arteries demonstrate increased tortuosity. Quantified arterial tortuosity may represent a clinically relevant imaging biomarker of vascular biology in pediatric stroke
Impact of Community-Based Maternal Health Workers on Coverage of Essential Maternal Health Interventions among Internally Displaced Communities in Eastern Burma: The MOM Project
Mullany and colleagues report outcomes from a project involving delivery of community-based maternal health services in eastern Burma, and report substantial increases in coverage of care
Genome-wide analysis identifies 12 loci influencing human reproductive behavior.
The genetic architecture of human reproductive behavior-age at first birth (AFB) and number of children ever born (NEB)-has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified, and the underlying mechanisms of AFB and NEB are poorly understood. We report a large genome-wide association study of both sexes including 251,151 individuals for AFB and 343,072 individuals for NEB. We identified 12 independent loci that are significantly associated with AFB and/or NEB in a SNP-based genome-wide association study and 4 additional loci associated in a gene-based effort. These loci harbor genes that are likely to have a role, either directly or by affecting non-local gene expression, in human reproduction and infertility, thereby increasing understanding of these complex traits
Assessing the effect of hypoxia on cardiac metabolism using Hyperpolarized 13C magnetic resonance spectroscopy
Improvements in readiness to change and drinking in primary care patients with unhealthy alcohol use: a prospective study
BACKGROUND. The course of alcohol consumption and cognitive dimensions of behavior change (readiness to change, importance of changing and confidence in ability to change) in primary care patients are not well described. The objective of the study was to determine changes in readiness, importance and confidence after a primary care visit, and 6-month improvements in both drinking and cognitive dimensions of behavior change, in patients with unhealthy alcohol use. METHODS. Prospective cohort study of patients with unhealthy alcohol use visiting primary care physicians, with repeated assessments of readiness, importance, and confidence (visual analogue scale (VAS), score range 1–10 points). Improvements 6 months later were defined as no unhealthy alcohol use or any increase in readiness, importance, or confidence. Regression models accounted for clustering by physician and adjusted for demographics, alcohol consumption and related problems, and discussion with the physician about alcohol. RESULTS. From before to immediately after the primary care physician visit, patients (n = 173) had increases in readiness (mean +1.0 point), importance (+0.2), and confidence (+0.5) (all p < 0.002). In adjusted models, discussion with the physician about alcohol was associated with increased readiness (+0.8, p = 0.04). At 6 months, many participants had improvements in drinking or readiness (62%), drinking or importance (58%), or drinking or confidence (56%). CONCLUSION. Readiness, importance and confidence improve in many patients with unhealthy alcohol use immediately after a primary care visit. Six months after a visit, most patients have improvements in either drinking or these cognitive dimensions of behavior change.Swiss National Science Foundation; Fondation Suisse de Recherche sur I'Alcool; Robert Wood Johnson Foundation (Generalist Faculty Physician Scholar Award
Increased Expression of Fatty-Acid and Calcium Metabolism Genes in Failing Human Heart
Heart failure (HF) involves alterations in metabolism, but little is known about cardiomyopathy-(CM)-specific or diabetes-independent alterations in gene expression of proteins involved in fatty-acid (FA) uptake and oxidation or in calcium-(Ca(2+))-handling in the human heart.RT-qPCR was used to quantify mRNA expression and immunoblotting to confirm protein expression in left-ventricular myocardium from patients with HF (n = 36) without diabetes mellitus of ischaemic (ICM, n = 16) or dilated (DCM, n = 20) cardiomyopathy aetiology, and non-diseased donors (CTL, n = 6).Significant increases in mRNA of genes regulating FA uptake (CD36) and intracellular transport (Heart-FA-Binding Protein (HFABP)) were observed in HF patients vs CTL. Significance was maintained in DCM and confirmed at protein level, but not in ICM. mRNA was higher in DCM than ICM for peroxisome-proliferator-activated-receptor-alpha (PPARA), PPAR-gamma coactivator-1-alpha (PGC1A) and CD36, and confirmed at the protein level for PPARA and CD36. Transcript and protein expression of Ca(2+)-handling genes (Two-Pore-Channel 1 (TPCN1), Two-Pore-Channel 2 (TPCN2), and Inositol 1,4,5-triphosphate Receptor type-1 (IP3R1)) increased in HF patients relative to CTL. Increases remained significant for TPCN2 in all groups but for TPCN1 only in DCM. There were correlations between FA metabolism and Ca(2+)-handling genes expression. In ICM there were six correlations, all distinct from those found in CTL. In DCM there were also six (all also different from those found in CTL): three were common to and three distinct from ICM.DCM-specific increases were found in expression of several genes that regulate FA metabolism, which might help in the design of aetiology-specific metabolic therapies in HF. Ca(2+)-handling genes TPCN1 and TPCN2 also showed increased expression in HF, while HF- and CM-specific positive correlations were found among several FA and Ca(2+)-handling genes
- …
