632 research outputs found
The 5f localization/delocalization in square and hexagonal americium monolayers: A FP-LAPW electronic structure study
The electronic and geometrical properties of bulk americium and square and
hexagonal americium monolayers have been studied with the full-potential
linearized augmented plane wave (FP-LAPW) method. The effects of several common
approximations are examined: (1) non-spin polarization (NSP) vs. spin
polarization (SP); (2) scalar-relativity (no spin-orbit coupling (NSO)) vs.
full-relativity (i.e., with spin-orbit (SO) coupling included); (3)
local-density approximation (LDA) vs. generalized-gradient approximation (GGA).
Our results indicate that both spin polarization and spin orbit coupling play
important roles in determining the geometrical and electronic properties of
americium bulk and monolayers. A compression of both americium square and
hexagonal monolayers compared to the americium bulk is also observed. In
general, the LDA is found to underestimate the equilibrium lattice constant and
give a larger total energy compared to the GGA calculations. While spin orbit
coupling shows a similar effect on both square and hexagonal monolayer
calculations regardless of the model, GGA versus LDA, an unusual spin
polarization effect on both square and hexagonal monolayers is found in the LDA
results as compared with the GGA results. The 5f delocalization transition of
americium is employed to explain our observed unusual spin polarization effect.
In addition, our results at the LDA level of theory indicate a possible 5f
delocalization could happen in the americium surface within the same Am II (fcc
crystal structure) phase, unlike the usually reported americium 5f
delocalization which is associated with crystal structure change. The
similarities and dissimilarities between the properties of an Am monolayer and
a Pu monolayer are discussed in detail.Comment: 22 pages, 8 figure
Adsorption and dissociation of molecular oxygen on the (0001) surface of double hexagonal close packed americium
In our continuing attempts to understand theoretically various surface
properties such as corrosion and potential catalytic activity of actinide
surfaces in the presence of environmental gases, we report here the first ab
initio study of molecular adsorption on the double hexagonal packed (dhcp)
americium (0001) surface. Dissociative adsorption is found to be energetically
more favorable compared to molecular adsorption. The most stable configuration
corresponds to a horizontal approach molecular dissociation with the oxygen
atoms occupying neighboring h3 sites, with chemisorption energies at the NSOC
and SOC theoretical levels being 9.395 eV and 9.886 eV, respectively. The
corresponding distances of the oxygen molecule from the surface and
oxygen-oxygen distance were found to be 0.953 Ang. and 3.731 Ang.,
respectively. Overall our calculations indicate that chemisorption energies in
cases with SOC are slightly more stable than the cases with NSOC in the
0.089-0.493 eV range. The work functions and net magnetic moments respectively
increased and decreased in all cases compared with the corresponding quantities
of the bare dhcp Am (0001) surface. The adsorbate-substrate interactions have
been analyzed in detail using the partial charges inside the muffin-tin
spheres, difference charge density distributions, and the local density of
states. The effects, if any, of chemisorption on the Am 5f electron
localization-delocalization characteristics in the vicinity of the Fermi level
are also discussed.Comment: 6 tables, 10 figure
Probing the 5f Electrons in Am-I by Hybrid Density Functional Theory
The ground states of the actinides and their compounds continue to be matters
of considerable controversies. Experimentally, Americium-I (Am-I) is a
non-magnetic dhcp metal whereas theoretically an anti-ferromagnetic ground
state is predicted. We show that hybrid density functional theory, which
admixes a fraction of exact Hartree-Fock (HF) exchange with approximate DFT
exchange, can correctly reproduce the ground state properties of Am. In
particular, for a 0.40 fraction of HF exchange we obtain a non-magnetic ground
state with equilibrium atomic volume, bulk modulus, 5f electron population, and
the density of electronic states all in good agreement with experimental data.
We argue that the exact HF exchange corrects the overestimation of the
approximate DFT exchange interaction.Comment: 1 table, 4 figures. Chemical Physics Letters, in press (2009
A Density Functional Study of Atomic Hydrogen and Oxygen Chemisorption on the Relaxed (0001) Surface of Double Hexagonal Close Packed Americium
Ab initio total energy calculations within the framework of density
functional theory have been performed for atomic hydrogen and oxygen
chemisorption on the (0001) surface of double hexagonal packed americium using
a full-potential all-electron linearized augmented plane wave plus local
orbitals method. Chemisorption energies were optimized with respect to the
distance of the adatom from the relaxed surface for three adsorption sites,
namely top, bridge, and hollow hcp sites, the adlayer structure corresponding
to coverage of a 0.25 monolayer in all cases. Chemisorption energies were
computed at the scalar-relativistic level (no spin-orbit coupling NSOC) and at
the fully relativistic level (with spin-orbit coupling SOC). The two-fold
bridge adsorption site was found to be the most stable site for O at both the
NSOC and SOC theoretical levels with chemisorption energies of 8.204 eV and
8.368 eV respectively, while the three-fold hollow hcp adsorption site was
found to be the most stable site for H with chemisorption energies of 3.136 eV
at the NSOC level and 3.217 eV at the SOC level. The respective distances of
the H and O adatoms from the surface were found to be 1.196 Ang. and 1.164 Ang.
Overall our calculations indicate that chemisorption energies in cases with SOC
are slightly more stable than the cases with NSOC in the 0.049-0.238 eV range.
The work functions and net magnetic moments respectively increased and
decreased in all cases compared with the corresponding quantities of bare dhcp
Am (0001) surface. The partial charges inside the muffin-tins, difference
charge density distributions, and the local density of states have been used to
analyze the Am-adatom bond interactions in detail. The implications of
chemisorption on Am 5f electron localization-delocalization are also discussed.Comment: 9 Tables, 5 figure
On the Convergence of the Electronic Structure Properties of the FCC Americium (001) Surface
Electronic and magnetic properties of the fcc Americium (001) surface have
been investigated via full-potential all-electron density-functional electronic
structure calculations at both scalar and fully relativistic levels. Effects of
various theoretical approximations on the fcc Am (001) surface properties have
been thoroughly examined. The ground state of fcc Am (001) surface is found to
be anti-ferromagnetic with spin-orbit coupling included (AFM-SO). At the ground
state, the magnetic moment of fcc Am (001) surface is predicted to be zero. Our
current study predicts the semi-infinite surface energy and the work function
for fcc Am (001) surface at the ground state to be approximately 0.82 J/m2 and
2.93 eV respectively. In addition, the quantum size effects of surface energy
and work function on the fcc Am (001) surface have been examined up to 7 layers
at various theoretical levels. Results indicate that a three layer film surface
model may be sufficient for future atomic and molecular adsorption studies on
the fcc Am (001) surface, if the primary quantity of interest is the
chemisorption energy.Comment: 34 pages, 9 figure
The 1969/1970 Stanford spectral data management system - Infrared spectrometry studies
Infrared spectrometer data analysis system report with program listing
“Lift Up a Living Nation”: Community and Nation, Socialism and Religion in The English Hymnal, 1906
The lead editors of The English Hymnal (1906), Percy Dearmer and Ralph Vaughan Williams, found Victorian hymnody in need of serious revision, and not just aesthetically. This musical book was intended as an expression of the editors' Christian socialist politics involving in the participation of the congregation. This article examines how they achieved this by the encouragement of active citizenship through communal music-making, using folksong tunes alongside texts which affirmed community. This article argues that the editors wedded religion and high-quality music with a focus on citizenship drawn from British Idealism; using a cultural movement to seek social change
Development of an optical system for the non-invasive tracking of stem cell growth on microcarriers
The emergence of medicinal indications for stem cell therapies has seen a need to develop the manufacturing capacity for adherent cells such as mesenchymal stem cells (MSCs). One such development is in the use of microcarriers, which facilitate enhanced cell densities for adherent stem cell cultures when compared with 2D culture platforms. Given the variety of stem cell expansion systems commercially available, novel methods of non-invasive and automated monitoring of cell number, confluence, and aggregation, within disparate environments, will become imperative to process control, ensuring reliable and consistent performance. The in situ epi-illumination of mouse embryonic fibroblasts and human mesenchymal stem cells attached to Cytodex 1 and 3 microcarriers was achieved using a bespoke microscope. Robust image processing techniques were developed to provide quantitative measurements of confluence, aggregate recognition, and cell number, without the need for fluorescent labeling or cell detachment. Large datasets of cells counted on individual microcarriers were statistically analyzed and compared with NucleoCounter measurements, with an average difference of less than 7 observed from days 0 to 6 of a 12-day culture noted, prior to the onset of aggregation. The developed image acquisition system and post-processing methodologies were successfully applied to dynamically moving colonized microcarriers. The proposed system offers a novel method of cell identification at the individual level, to consistently and accurately assess viable cell number, confluence, and cell distribution, while also minimizing the variability inherent in the current invasive means by which cells adhered to microcarriers are analyzed. Biotechnol. Bioeng. 2017;9999: 1–11. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc
First-principles study of surface properties of PuO2: Effects of thickness and O-vacancy on surface stability and chemical activity
The (111), (110), and (001) surfaces properties of PuO2 are studied by using
density-functional theory+U method. The total-energy static calculations
determine the relative order of stability for low-index PuO2 surfaces, namely,
O-terminated (111) > (110) > defective (001) > polar (001). The effect of
thickness is shown to modestly modulate the surface stability and chemical
activity of the (110) surface. The high work function of 6.19 eV indicates the
chemical inertia of the most stable (111) surface, and the surface O-vacancy
with concentration C_V=25% can efficiently lower the work function to 4.35 eV,
which is a crucial indicator of the difference in the surface chemical
activities between PuO2 and \alpha-Pu2O3. For the polar (001) surface, 50%
on-surface O-vacancy can effectively quench the dipole moment and stabilize the
surface structure, where the residual surface oxygen atoms are arranged in a
zigzag manner along the direction. We also investigate the relative
stability of PuO2 surfaces in an oxygen environment. Under oxygen-rich
conditions, the stoichiometric O-terminated (111) is found to be the most
stable surface. Whereas under O-reducing conditions, the on-surface O-vacancy
of C_V = 1/9 is stable, and for high reducing conditions, the (111) surface
with nearly one monolayer subsurface oxygen removed (C_V = 8/9) becomes most
stable.Comment: 9 JNM pages, 7 figure
- …
