1,249 research outputs found

    Anomalies on orbifolds with gauge symmetry breaking

    Get PDF
    We embed two 4D chiral multiplets of opposite representations in the 5D N=2 SU(N+K)SU(N+K) gauge theory compactified on an orbifold S1/(Z2×Z2)S^1/(Z_2\times Z'_2). There are two types of orbifold boundary conditions in the extra dimension to obtain the 4D N=1 SU(N)×SU(K)×U(1)SU(N)\times SU(K)\times U(1) gauge theory from the bulk: in Type I, one has the bulk gauge group at y=0y=0 and the unbroken gauge group at y=πR/2y=\pi R/2 while in Type II, one has the unbroken gauge group at both fixed points. In both types of orbifold boundary conditions, we consider the zero mode(s) as coming from a bulk (K+N)(K+N)-plet and brane fields at the fixed point(s) with the unbroken gauge group. We check the consistency of this embedding of fields by the localized anomalies and the localized FI terms. We show that the localized anomalies in Type I are cancelled exactly by the introduction of a bulk Chern-Simons term. On the other hand, in some class of Type II, the Chern-Simons term is not enough to cancel all localized anomalies even if they are globally vanishing. We also find that for the consistent embedding of brane fields, there appear only the localized log FI terms at the fixed point(s) with a U(1) factor.Comment: LaTeX file of 19 pages with no figure, published versio

    The MSSM from Scherk-Schwarz Supersymmetry Breaking

    Get PDF
    We present a five-dimensional model compactified on an interval where supersymmetry is broken by the Scherk-Schwarz mechanism. The gauge sector propagates in the bulk, two Higgs hypermultiplets are quasilocalized, and quark and lepton multiplets localized, in one of the boundaries. The effective four-dimensional theory is the MSSM with very heavy gauginos, heavy squarks and light sleptons and Higgsinos. The soft tree-level squared masses of the Higgs sector can be negative and they can (partially) cancel the positive one-loop contributions from the gauge sector. Electroweak symmetry breaking can then comfortably be triggered by two-loop radiative corrections from the top-stop sector. The fine tuning required to obtain the electroweak scale is found to be much smaller than in the MSSM, with essentially no fine-tuning for few TeV gaugino masses. All bounds from direct Higgs searches at LEP and from electroweak precision observables can be satisfied. The lightest supersymmetric particle is a (Higgsino-like) neutralino that can accomodate the abundance of Dark Matter consistently with recent WMAP observations.Comment: 23 pages, 3 figure

    Proton Decay in Supersymmetric GUT Models

    Full text link
    The instability of protons is a crucial prediction of supersymmetric GUTs. We review the decay in minimal supersymmetric SU(5), which is dominated by dimension-five operators, and discuss the implications of the failure of Yukawa unification for the decay rate. In a consistent SU(5) model, where SU(5) relations among Yukawa couplings hold, the proton decay rate can be several orders of magnitude smaller than the present experimental bound. Finally, we discuss orbifold GUTs, where proton decay via dimension-five operators is absent. The branching ratios of dimension-six decay can significantly differ from those in four dimensions.Comment: DESY report number correcte

    Non-commutative Euclidean structures in compact spaces

    Get PDF
    Based on results for real deformation parameter q we introduce a compact non- commutative structure covariant under the quantum group SOq(3) for q being a root of unity. To match the algebra of the q-deformed operators with necesarry conjugation properties it is helpful to define a module over the algebra genera- ted by the powers of q. In a representation where X is diagonal we show how P can be calculated. To manifest some typical properties an example of a one-di- mensional q-deformed Heisenberg algebra is also considered and compared with non-compact case.Comment: Changed conten

    Running Coupling with Minimal Length

    Full text link
    In models with large additional dimensions, the GUT scale can be lowered to values accessible by future colliders. Due to modification of the loop corrections from particles propagating into the extra dimensions, the logarithmic running of the couplings of the Standard Model is turned into a power law. These loop-correction are divergent and the standard way to achieve finiteness is the introduction of a cut-off. The question remains, whether the results are reliable as they depend on an unphysical parameter. In this paper, we show that this running of the coupling can be calculated within a model including the existence of a minimal length scale. The minimal length acts as a natural regulator and allows us to confirm cut-off computations.Comment: 26 pages, 5 figures, typos corrected, replaced with published versio

    Bulk gravitons from a cosmological brane

    Full text link
    We investigate the emission of gravitons by a cosmological brane into an Anti de Sitter five-dimensional bulk spacetime. We focus on the distribution of gravitons in the bulk and the associated production of `dark radiation' in this process. In order to evaluate precisely the amount of dark radiation in the late low-energy regime, corresponding to standard cosmology, we study numerically the emission, propagation and bouncing off the brane of bulk gravitons.Comment: 27 pages, 5 figures, minor corrections. Final versio

    Supersymmetry Breaking in Warped Geometry

    Full text link
    We examine the soft supersymmetry breaking parameters in supersymmetric theories on a slice of AdS_5 which generate the hierarchical Yukawa couplings by dynamically localizing the bulk matter fields in extra dimension. Such models can be regarded as the AdS dual of the recently studied 4-dimensional models which contain a supersymmetric CFT to generate the hierarchical Yukawa couplings. In such models, if supersymmetry breaking is mediated by the bulk radion superfield and/or some brane chiral superfields, potentially dangerous flavor-violating soft parameters can be naturally suppressed, thereby avoiding the SUSY flavor problem. We present some models of radion-dominated supersymmetry breaking which yield a highly predictive form of soft parameters in this framework.Comment: 17 pages, no figures, uses JHEP clas

    Energy Transfer between Throats from a 10d Perspective

    Full text link
    Strongly warped regions, also known as throats, are a common feature of the type IIB string theory landscape. If one of the throats is heated during cosmological evolution, the energy is subsequently transferred to other throats or to massless fields in the unwarped bulk of the Calabi-Yau orientifold. This energy transfer proceeds either by Hawking radiation from the black hole horizon in the heated throat or, at later times, by the decay of throat-localized Kaluza-Klein states. In both cases, we calculate in a 10d setup the energy transfer rate (respectively decay rate) as a function of the AdS scales of the throats and of their relative distance. Compared to existing results based on 5d models, we find a significant suppression of the energy transfer rates if the size of the embedding Calabi-Yau orientifold is much larger than the AdS radii of the throats. This effect can be partially compensated by a small distance between the throats. These results are relevant, e.g., for the analysis of reheating after brane inflation. Our calculation employs the dual gauge theory picture in which each throat is described by a strongly coupled 4d gauge theory, the degrees of freedom of which are localized at a certain position in the compact space.Comment: 25 pages; a comment adde

    A Shift Symmetry in the Higgs Sector: Experimental Hints and Stringy Realizations

    Full text link
    We interpret reported hints of a Standard Model Higgs boson at ~ 125 GeV in terms of high-scale supersymmetry breaking with a shift symmetry in the Higgs sector. More specifically, the Higgs mass range suggested by recent LHC data extrapolates, within the (non-supersymmetric) Standard Model, to a vanishing quartic Higgs coupling at a UV scale between 10^6 and 10^18 GeV. Such a small value of lambda can be understood in terms of models with high-scale SUSY breaking if the Kahler potential possesses a shift symmetry, i.e., if it depends on H_u and H_d only in the combination (H_u+\bar{H}_d). This symmetry is known to arise rather naturally in certain heterotic compactifications. We suggest that such a structure of the Higgs Kahler potential is common in a wider class of string constructions, including intersecting D7- and D6-brane models and their extensions to F-theory or M-theory. The latest LHC data may thus be interpreted as hinting to a particular class of compactifications which possess this shift symmetry.Comment: v2: References added. v3: References added, published versio

    RS1 Cosmology as Brane Dynamics in an AdS/Schwarzschild Bulk

    Get PDF
    We explore various facets of the cosmology of the Randall-Sundrum scenario with two branes by considering the dynamics of the branes moving in a bulk AdS/Schwarzschild geometry. This approach allows us both to understand in more detail and from a different perspective the role of the stabilization of the hierarchy in the brane cosmology, as well as to extend to the situation where the metric contains a horizon. In particular, we explicitly determine how the Goldberger-Wise stabilization mechanism perturbs the background bulk geometry to produce a realistic cosmology.Comment: 9 pages, uses ReVTeX, no figure
    corecore