885 research outputs found
Protein/lipid interactions in phospholipid monolayers containing the bacterial antenna protein B800-850
Studies on monomolecular layers of phospholipids containing the antenna protein B800-850 (LHCP) and in
some cases additionally the reaction center of the photosynthetic bacterium Rhodopseudomonas sphaeroides
are reported. Information on monolayer preparation as well as on protein /lipid and protein/protein
interaction is obtained by means of fluorescence spectroscopy and microscopy at the air/water interface in
combination with film balance experiments. It is shown that a homogeneous distribution of functional
proteins can be achieved. This can be transformed into a regular pattern-like distribution by inducing a
phospholipid phase transition. Although the LHCP preferentially partitions into the fluid lipid phase, it
decreases the lateral pressure necessary to crystallize the lipid. This is probably due to an increase in order of
the fluid phase. A pressure-induced conformation change of the LHCP is detected via a drastic change in
fluorescence yield. A highly efficient energy transfer from LHCP to the reaction center is observed. This
proves the quantitative reconstitution of both types of proteins and indicates protein aggregation also in the
monolayer
A combined ion-sputtering and electron-beam annealing device for the in vacuo postpreparation of scanning probes
From Au-Thiolate Chains to Thioether Sierpiński Triangles: The Versatile Surface Chemistry of 1,3,5-Tris(4-Mercaptophenyl)Benzene on Au(111)
Self-assembly of 1,3,5-tris(4-mercaptophenyl)benzene (TMB) – a three-fold symmetric, thiol functionalized aromatic molecule – was studied on Au(111) with the aim to realize extended Au-thiolate linked molecular architectures. The focus lay on resolving thermally activated structural and chemical changes by a combination of microscopy and spectroscopy. Thereby Scanning Tunneling Microscopy provided submolecularly resolved structural information, while the chemical state of sulfur was assessed by X-ray Photoelectron Spectroscopy. Directly after room temperature deposition only less well ordered structures were observed. Mild annealing promoted the first structural transition into ordered molecular chains, partly organized in homochiral molecular braids. Further annealing led to self-similar Sierpiński triangles, while annealing at even higher temperatures again resulted in mostly disordered structures. Both the irregular aggregates observed at room temperature and the chains were identified as metal-organic assemblies, whereby two out of the three intermolecular binding motifs are energetically equivalent according to Density Functional Theory simulations. The emergence of Sierpiński triangles is driven by a chemical transformation, i.e. the conversion of coordinative Au-thiolate to covalent thioether linkages, and can be further understood by Monte Carlo simulations. The great structural variance of TMB on Au(111) can on one hand be explained by the energetic equivalence of two binding motifs. On the other hand, the unexpected chemical transition even enhances the structural variance and results in thiol-derived covalent molecular architectures
A Phase-Field Model of Spiral Dendritic Growth
Domains of condensed-phase monolayers of chiral molecules exhibit a variety
of interesting nonequilibrium structures when formed via pressurization. To
model these domain patterns, we add a complex field describing the tilt degree
of freedom to an (anisotropic) complex-phase-field solidification model. The
resulting formalism allows for the inclusion of (in general, non-reflection
symmetric) interactions between the tilt, the solid-liquid interface, and the
bond orientation. Simulations demonstrate the ability of the model to exhibit
spiral dendritic growth.Comment: text plus Four postscript figure file
Instabilities and disorder of the domain patterns in the systems with competing interactions
The dynamics of the domains is studied in a two-dimensional model of the
microphase separation of diblock copolymers in the vicinity of the transition.
A criterion for the validity of the mean field theory is derived. It is shown
that at certain temperatures the ordered hexagonal pattern becomes unstable
with respect to the two types of instabilities: the radially-nonsymmetric
distortions of the domains and the repumping of the order parameter between the
neighbors. Both these instabilities may lead to the transformation of the
regular hexagonal pattern into a disordered pattern.Comment: ReVTeX, 4 pages, 3 figures (postscript); submitted to Phys. Rev. Let
Direct frequency comb measurement of OD + CO → DOCO kinetics
The kinetics of the hydroxyl radical (OH) + carbon monoxide (CO) reaction, which is fundamental to both atmospheric and combustion chemistry, are complex because of the formation of the hydrocarboxyl radical (HOCO) intermediate. Despite extensive studies of this reaction, HOCO has not been observed under thermal reaction conditions. Exploiting the sensitive, broadband, and high-resolution capabilities of time-resolved cavity-enhanced direct frequency comb spectroscopy, we observed deuteroxyl radical (OD) + CO reaction kinetics and detected stabilized trans-DOCO, the deuterated analog of trans-HOCO. By simultaneously measuring the time-dependent concentrations of the trans-DOCO and OD species, we observed unambiguous low-pressure termolecular dependence of the reaction rate coefficients for N_2 and CO bath gases. These results confirm the HOCO formation mechanism and quantify its yield
High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation
Ultrafast thin disk laser oscillators achieve the highest average output powers and pulse energies of any mode-locked laser oscillator technology. The thin disk concept avoids thermal problems occurring in conventional high-power rod or slab lasers and enables high-power TEM00 operation with broadband gain materials. Stable and self-starting passive pulse formation is achieved with semiconductor saturable absorber mirrors (SESAMs). The key components of ultrafast thin disk lasers, such as gain material, SESAM, and dispersive cavity mirrors, are all used in reflection. This is an advantage for the generation of ultrashort pulses with excellent temporal, spectral, and spatial properties because the pulses are not affected by large nonlinearities in the oscillator. Output powers close to 100W and pulse energies above 10μJ are directly obtained without any additional amplification, which makes these lasers interesting for a growing number of industrial and scientific applications such as material processing or driving experiments in high-field science. Ultrafast thin disk lasers are based on a power-scalable concept, and substantially higher power levels appear feasible. However, both the highest power levels and pulse energies are currently only achieved with Yb:YAG as the gain material, which limits the gain bandwidth and therefore the achievable pulse duration to 700 to 800fs in efficient thin disk operation. Other Yb-doped gain materials exhibit a larger gain bandwidth and support shorter pulse durations. It is important to evaluate their suitability for power scaling in the thin disk laser geometry. In this paper, we review the development of ultrafast thin disk lasers with shorter pulse durations. We discuss the requirements on the gain materials and compare different Yb-doped host materials. The recently developed sesquioxide materials are particularly promising as they enabled the highest optical-to-optical efficiency (43%) and shortest pulse duration (227fs) ever achieved with a mode-locked thin disk lase
High harmonic generation in a gas-filled hollow-core photonic crystal fiber
High harmonic generation (HHG) of intense infrared laser radiation (Ferray et al., J. Phys. B: At. Mol. Opt. Phys. 21:L31, 1988; McPherson et al., J. Opt. Soc. Am. B 4:595, 1987) enables coherent vacuum-UV (VUV) to soft-X-ray sources. In the usual setup, energetic femtosecond laser pulses are strongly focused into a gas jet, restricting the interaction length to the Rayleigh range of the focus. The average photon flux is limited by the low conversion efficiency and the low average power of the complex laser amplifier systems (Keller, Nature 424:831, 2003; Südmeyer et al., Nat. Photonics 2:599, 2008; Röser et al., Opt. Lett. 30:2754, 2005; Eidam et al., IEEE J. Sel. Top. Quantum Electron. 15:187, 2009) which typically operate at kilohertz repetition rates. This represents a severe limitation for many experiments using the harmonic radiation in fields such as metrology or high-resolution imaging. Driving HHG with novel high-power diode-pumped multi-megahertz laser systems has the potential to significantly increase the average photon flux. However, the higher average power comes at the expense of lower pulse energies because the repetition rate is increased by more than a thousand times, and efficient HHG is not possible in the usual geometry. So far, two promising techniques for HHG at lower pulse energies were developed: external build-up cavities (Gohle et al., Nature 436:234, 2005; Jones et al., Phys. Rev. Lett. 94:193, 2005) and resonant field enhancement in nanostructured targets (Kim et al., Nature 453:757, 2008). Here we present a third technique, which has advantages in terms of ease of HHG light extraction, transverse beam quality, and the possibility to substantially increase conversion efficiency by phase-matching (Paul et al., Nature 421:51, 2003; Ren et al., Opt. Express 16:17052, 2008; Serebryannikov et al., Phys. Rev. E (Stat. Nonlinear Soft Matter Phys.) 70:66611, 2004; Serebryannikov et al., Opt. Lett. 33:977, 2008; Zhang et al., Nat. Phys. 3:270, 2007). The interaction between the laser pulses and the gas occurs in a Kagome-type Hollow-Core Photonic Crystal Fiber (HC-PCF) (Benabid et al., Science 298:399, 2002), which reduces the detection threshold for HHG to only 200nJ. This novel type of fiber guides nearly all of the light in the hollow core (Couny et al., Science 318:1118, 2007), preventing damage even at intensities required for HHG. Our fiber guided 30-fs pulses with a pulse energy of more than 10μJ, which is more than five times higher than for any other photonic crystal fiber (Hensley et al., Conference on Lasers and Electro-Optics (CLEO), IEEE Press, New York, 2008
Electronic transport in polycrystalline graphene
Most materials in available macroscopic quantities are polycrystalline.
Graphene, a recently discovered two-dimensional form of carbon with strong
potential for replacing silicon in future electronics, is no exception. There
is growing evidence of the polycrystalline nature of graphene samples obtained
using various techniques. Grain boundaries, intrinsic topological defects of
polycrystalline materials, are expected to dramatically alter the electronic
transport in graphene. Here, we develop a theory of charge carrier transmission
through grain boundaries composed of a periodic array of dislocations in
graphene based on the momentum conservation principle. Depending on the grain
boundary structure we find two distinct transport behaviours - either high
transparency, or perfect reflection of charge carriers over remarkably large
energy ranges. First-principles quantum transport calculations are used to
verify and further investigate this striking behaviour. Our study sheds light
on the transport properties of large-area graphene samples. Furthermore,
purposeful engineering of periodic grain boundaries with tunable transport gaps
would allow for controlling charge currents without the need of introducing
bulk band gaps in otherwise semimetallic graphene. The proposed approach can be
regarded as a means towards building practical graphene electronics.Comment: accepted in Nature Material
- …
