26,308 research outputs found

    5-dim Superconformal Index with Enhanced En Global Symmetry

    Get PDF
    The five-dimensional N = 1 supersymmetric gauge theory with Sp(N) gauge group and SO(2N(f)) flavor symmetry describes the physics on N D4-branes with N-f D8-branes on top of a single O8 orientifold plane in Type I&apos; theory. This theory is known to be superconformal at the strong coupling limit with the enhanced global symmetry ENf+1 for N-f <= 7. In this work we calculate the superconformal index on S-1 x S-4 for the Sp(1) gauge theory by the localization method and confirm such enhancement of the global symmetry at the superconformal limit for N-f <= 5 to a few leading orders in the chemical potential. Both perturbative and (anti) instanton contributions are present in this calculation. For N-f = 6, 7 cases some issues related the pole structure of the instanton calculation could not be resolved and here we could provide only some suggestive answer for the leading contributions to the index. For the Sp(N) case, similar issues related to the pole structure appear.1151sciescopu

    Increased Risk of Ischemic Stroke during Sleep in Apneic Patients.

    Get PDF
    BACKGROUND AND PURPOSE:The literature indicates that obstructive sleep apnea (OSA) increases the risk of ischemic stroke. However, the causal relationship between OSA and ischemic stroke is not well established. This study examined whether preexisting OSA symptoms affect the onset of acute ischemic stroke. METHODS:We investigated consecutive patients who were admitted with acute ischemic stroke, using a standardized protocol including the Berlin Questionnaire on symptoms of OSA prior to stroke. The collected stroke data included the time of the stroke onset, risk factors, and etiologic subtypes. The association between preceding OSA symptoms and wake-up stroke (WUS) was assessed using multivariate logistic regression analysis. RESULTS:We identified 260 subjects with acute ischemic strokes with a definite onset time, of which 25.8% were WUS. The presence of preexisting witnessed or self-recognized sleep apnea was the only risk factor for WUS (adjusted odds ratio=2.055, 95% confidence interval=1.035-4.083, p=0.040). CONCLUSIONS:Preexisting symptoms suggestive of OSA were associated with the occurrence of WUS. This suggests that OSA contributes to ischemic stroke not only as a predisposing risk factor but also as a triggering factor. Treating OSA might therefore be beneficial in preventing stroke, particularly that occurring during sleep

    The ancient phosphatidylinositol 3-kinase signaling system is a master regulator of energy and carbon metabolism in algae

    Get PDF
    Algae undergo a complete metabolic transformation under stress by arresting cell growth, inducing autophagy and hyperaccumulating biofuel precursors such as triacylglycerols and starch. However, the regulatory mechanisms behind this stress-induced transformation are still unclear. Here, we use biochemical, mutational, and “omics” approaches to demonstrate that PI3K signaling mediates the homeostasis of energy molecules and influences carbon metabolism in algae. In Chlamydomonas reinhardtii, the inhibition and knockdown (KD) of algal class III PI3K led to significantly decreased cell growth, altered cell morphology, and higher lipid and starch contents. Lipid profiling of wild-type and PI3K KD lines showed significantly reduced membrane lipid breakdown under nitrogen starvation (-N) in the KD. RNA-seq and network analyses showed that under -N conditions, the KD line carried out lipogenesis rather than lipid hydrolysis by initiating de novo fatty acid biosynthesis, which was supported by tricarboxylic acid cycle down-regulation and via acetyl-CoA synthesis from glycolysis. Remarkably, autophagic responses did not have primacy over inositide signaling in algae, unlike in mammals and vascular plants. The mutant displayed a fundamental shift in intracellular energy flux, analogous to that in tumor cells. The high free fatty acid levels and reduced mitochondrial ATP generation led to decreased cell viability. These results indicate that the PI3K signal transduction pathway is the metabolic gatekeeper restraining biofuel yields, thus maintaining fitness and viability under stress in algae. This study demonstrates the existence of homeostasis between starch and lipid synthesis controlled by lipid signaling in algae and expands our understanding of such processes, with biotechnological and evolutionary implications.Ministry of Science, ICT and Future Planning 2015M3A6A2065697Ministry of Oceans and Fisheries 2015018
    corecore