61 research outputs found
Gamma-ray irradiation stimulates the expression of caveolin-1 and GFAP in rat spinal cord: a study of immunoblot and immunohistochemistry
We studied the expression of caveolin-1 in the spinal cords of rats using 60Co γ-ray irradiation (single dose of 8 Gray (Gy)) in order to determine the possible involvement of caveolin-1 in the tissues of the central nervous system after irradiation. Spinal cords sampled at days 1, 4, and 9 post-irradiation (PI) (n = 5 per each time point) were analyzed by Western blot and immunohistochemistry. Western blot analysis showed that the expression of caveolin-1 was significantly increased at day 1 PI (p < 0.05), and returned to the level of normal control rats on days 4 and 9 PI. Immunohistochemistry showed that caveolin-1 immunoreactivity was enhanced in some glial cells, vascular endothelial cells, and neurons in the spinal cords. The increased expression of glial fibrillary acidic protein (GFAP), a marker for an astroglial reaction, was consistent with that of caveolin-1. In addition, caveolin-1 was co-localized in hypertrophied GFAP-positive astrocytes. Taking all these facts into consideration, we postulate that irradiation induces the increased expression of caveolin-1 in cells of the central nervous system, and that its increased expression in astrocytes may contribute to hypertrophy of astrocytes in the spinal cord after irradiation. The precise role of caveolin-1 in the spinal cords should be studied further
Chitinase 1: a novel therapeutic target in metabolic dysfunction-associated steatohepatitis
BackgroundMetabolic dysfunction-associated steatohepatitis (MASH) is characterized by persistent inflammatory cascades, with macrophage activation playing a pivotal role. Chitinase 1 (CHIT1), produced by activated macrophages, is a key player in this cascade. In this study, we aimed to explore the role of CHIT1 in MASH with progressive liver fibrosis.MethodsFibrotic liver tissue and serum from distinct patient groups were analyzed using nCounter MAX, flow cytometry, immunohistochemistry, and enzyme-linked immunosorbent assay. A MASH mouse model was constructed to evaluate the effectiveness of OATD-01, a chitinase inhibitor. Macrophage profiling was performed using single-nuclei RNA sequencing and flow cytometry.ResultsCHIT1 expression in fibrotic liver tissues was significantly correlated with the extent of liver fibrosis, macrophages, and inflammation. Single-nuclei RNA sequencing demonstrated a notable increase in macrophages numbers, particularly of lipid-associated macrophages, in MASH mice. Treatment with OATD-01 reduced non-alcoholic fatty liver disease activity score and Sirius red-positive area. Additionally, OATD-01-treated mice had lower CHIT1, F4/80, and α-smooth muscle actin positivity, as well as significantly lower levels of inflammatory markers, pro-fibrotic genes, and matrix remodeling-related mRNAs than vehicle-treated mice. Although the population of F4/80+CD11b+ intrahepatic mononuclear phagocytes remained unchanged, their infiltration and activation (CHIT1+MerTK+) significantly decreased in OATD-01-treated mice, compared with that observed in vehicle-treated mice.ConclusionsOur study underscores the pivotal role of CHIT1 in MASH. The observed significant improvement in inflammation and hepatic fibrosis, particularly at higher doses of the CHIT1 inhibitor, strongly suggests the potential of CHIT1 as a therapeutic target in MASH accompanied by progressive liver fibrosis
Neighborhood Walking and Social Capital: The Correlation between Walking Experience and Individual Perception of Social Capital
The purpose of this study was to analyze the relationship between people’s actual walking experience and their social capital levels in order to examine the possibility of restoring weakened social functions of streets and public spaces in a walking-friendly urban environment. Based on the survey data of 591 residents of Seoul, we empirically analyzed the relationship between walking experience for various purposes and individual perceptions of social capital using one-way ANOVA and OLS regression models. As a result of the analysis, we found that the levels of neighborly trust and networking of people who experienced leisure walking were higher than those of people who did not, while there was no difference in the level of social capital according to walking experiences for other purposes. This result is significant in that it shows the basis for the restoration of the social function of neighborhoods through social capital formation of people as an effect of walking. Hence, it is important to create a walking environment that supports leisure activities
A Study on Treatment and Recycling of a High Concentration of Chlorine and Hydrogen Chloride Gas Using Molten Carbonate
Fabrication of functionalized halloysite nanotube blended ultrafiltration membranes for high flux and fouling resistance
Halloysite nanotubes (HNTs) were functionalized using 3-aminopropyltriethoxysilane (APTES) and incorporated into polyethersulfone (PES) membranes to improve the hydrophilicity of the membranes as well as the interfacial interaction between HNTs and the polymer matrix. The intrinsic properties, permeability, and selectivity of the prepared membranes were analyzed to evaluate the membrane performance. In addition, humic acid (HA) fouling experiments were conducted to measure the antifouling properties of the fabricated membranes. As HNTs and functionalized HNTs (f-HNTs) contents are increased, hydrophilicity and mechanical strength were enhanced, and membranes with f-HNTs showed further improved performance. The pure water flux of membranes with 2% HNTs and f-HNT was 7.5 times higher than that of a pristine PES membrane without a trade-off relation between the water flux and HA rejection. The membranes with f-HNTs showed the highest antifouling properties compared to membranes with HNTs because enhanced hydrophilicity played a key role in preventing accumulation of HA.</jats:p
Surface Fouling Characterization Methods for Polymeric Membranes Using a Short Experimental Study
Membrane surface fouling has always been a critical issue for the long-term operation of polymeric membranes. Therefore, it is crucial to develop new approaches to prevent fouling. While developing new approaches, characterization methods are greatly important for understanding the distribution of fouling on the membrane surface. In this work, a cellulose acetate membrane was fouled by the filtration of artificial wastewater based on alginate. The surfaces of fouled membranes were characterized through scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), atomic force microscopy (AFM), and white light interferometry (WLI). The results were then compared in terms of the resolution, accuracy, feasibility, and cost-efficiency
Omni-Directional Protected Nanofiber Membranes by Surface Segregation of PDMS-Terminated Triblock Copolymer for High-Efficiency Oil/Water Emulsion Separation
- …
