5,114 research outputs found
Direct evidence for the magnetic ordering of Nd ions in NdFeAsO by high resolution inelastic neutron scattering
We investigated the low energy excitations in the parent compound NdFeAsO of
the Fe-pnictide superconductor in the eV range by a back scattering
neutron spectrometer. The energy scans on a powder NdFeAsO sample revealed
inelastic peaks at E = 1.600 eV at T = 0.055 K on both energy
gain and energy loss sides. The inelastic peaks move gradually towards lower
energy with increasing temperature and finally merge with the elastic peak at
about 6 K. We interpret the inelastic peaks to be due to the transition between
hyperfine-split nuclear level of the Nd and Nd isotopes with
spin . The hyperfine field is produced by the ordering of the
electronic magnetic moment of Nd at low temperature and thus the present
investigation gives direct evidence of the ordering of the Nd magnetic
sublattice of NdFeAsO at low temperature
Quantum key distribution using non-classical photon number correlations in macroscopic light pulses
We propose a new scheme for quantum key distribution using macroscopic
non-classical pulses of light having of the order 10^6 photons per pulse.
Sub-shot-noise quantum correlation between the two polarization modes in a
pulse gives the necessary sensitivity to eavesdropping that ensures the
security of the protocol. We consider pulses of two-mode squeezed light
generated by a type-II seeded parametric amplification process. We analyze the
security of the system in terms of the effect of an eavesdropper on the bit
error rates for the legitimate parties in the key distribution system. We also
consider the effects of imperfect detectors and lossy channels on the security
of the scheme.Comment: Modifications:added new eavesdropping attack, added more references
Submitted to Physical Review A [email protected]
Production of a Fermi gas of atoms in an optical lattice
We prepare a degenerate Fermi gas of potassium atoms by sympathetic cooling
with rubidium atoms in a one-dimensional optical lattice. In a tight lattice we
observe a change of the density of states of the system, which is a signature
of quasi two dimensional confinement. We also find that the dipolar
oscillations of the Fermi gas along the tight lattice are almost completely
suppressed.Comment: 4 pages, 4 figures, revised versio
Ion detection in the photoionization of a Rb Bose-Einstein condensate
Two-photon ionization of Rubidium atoms in a magneto-optical trap and a
Bose-Einstein condensate (BEC) is experimentally investigated. Using 100 ns
laser pulses, we detect single ions photoionized from the condenstate with a
35(10)% efficiency. The measurements are performed using a quartz cell with
external electrodes, allowing large optical access for BECs and optical
lattices.Comment: 14 pages, 7 figure
Orbitally Driven Spin Pairing in the 3D Non-Magnetic Mott Insulator BaVS3: Evidence from Single Crystal Studies
Static electrical and magnetic properties of single crystal BaVS_3 were
measured over the structural (T_S=240K), metal-insulator (T_MI=69K), and
suspected orbital ordering (T_X=30K) transitions. The resistivity is almost
isotropic both in the metallic and insulating states. An anomaly in the
magnetic anisotropy at T_X signals a phase transition to an ordered low-T
state. The results are interpreted in terms of orbital ordering and spin
pairing within the lowest crystal field quasi-doublet. The disordered insulator
at T_X<T<T_MI is described as a classical liquid of non-magnetic pairs.Comment: 4 pages, 5 figures, revtex, epsf, and multicol style. Problem with
figures fixed. To appear in Phys. Rev. B Rap. Com
Lifetime determination of excited states in Cd-106
Two separate experiments using the Differential Decay Curve Method have been performed to extract mean lifetimes of excited states in 106 Cd. The inedium-spin states of interest were populated by the Mo-98(C-12, 4n) Cd-106 reaction performed at the Wright Nuclear Structure Lab., Yale University. From this experiment, two isomeric state mean lifetimes have been deduced. The low-lying states were populated by the Mo-96(C-13, 3n)Cd-106 reaction performed at the Institut fur Kernphysik, Universitat zu Koln. The mean lifetime of the I-pi = 2(1)(+) state was deduced, tentatively, as 16.4(9) ps. This value differs from the previously accepted literature value from Coulomb excitation of 10.43(9) ps
A Rydberg Quantum Simulator
Following Feynman and as elaborated on by Lloyd, a universal quantum
simulator (QS) is a controlled quantum device which reproduces the dynamics of
any other many particle quantum system with short range interactions. This
dynamics can refer to both coherent Hamiltonian and dissipative open system
evolution. We investigate how laser excited Rydberg atoms in large spacing
optical or magnetic lattices can provide an efficient implementation of a
universal QS for spin models involving (high order) n-body interactions. This
includes the simulation of Hamiltonians of exotic spin models involving
n-particle constraints such as the Kitaev toric code, color code, and lattice
gauge theories with spin liquid phases. In addition, it provides the
ingredients for dissipative preparation of entangled states based on
engineering n-particle reservoir couplings. The key basic building blocks of
our architecture are efficient and high-fidelity n-qubit entangling gates via
auxiliary Rydberg atoms, including a possible dissipative time step via optical
pumping. This allows to mimic the time evolution of the system by a sequence of
fast, parallel and high-fidelity n-particle coherent and dissipative Rydberg
gates.Comment: 8 pages, 4 figure
Operational experience with the GEM detector assembly lines for the CMS forward muon upgrade
The CMS Collaboration has been developing large-area triple-gas electron multiplier (GEM) detectors to be installed in the muon Endcap regions of the CMS experiment in 2019 to maintain forward muon trigger and tracking performance at the High-Luminosity upgrade of the Large Hadron Collider (LHC); 10 preproduction detectors were built at CERN to commission the first assembly line and the quality controls (QCs). These were installed in the CMS detector in early 2017 and participated in the 2017 LHC run. The collaboration has prepared several additional assembly and QC lines for distributed mass production of 160 GEM detectors at various sites worldwide. In 2017, these additional production sites have optimized construction techniques and QC procedures and validated them against common specifications by constructing additional preproduction detectors. Using the specific experience from one production site as an example, we discuss how the QCs make use of independent hardware and trained personnel to ensure fast and reliable production. Preliminary results on the construction status of CMS GEM detectors are presented with details of the assembly sites involvement
- …
