12 research outputs found
HMGA2 exhibits dRP/AP site cleavage activity and protects cancer cells from DNA-damage-induced cytotoxicity during chemotherapy
HMGA proteins are not translated in normal human somatic cells, but are present in high copy numbers in pluripotent embryonic stem cells and most neoplasias. Correlations between the degree of malignancy, patient prognostic index and HMGA levels have been firmly established. Intriguingly, HMGA2 is also found in rare tumor-inducing cells which are resistant to chemotherapy. Here, we demonstrate that HMGA1a/b and HMGA2 possess intrinsic dRP and AP site cleavage activities, and that lysines and arginines in the AT-hook DNA-binding domains function as nucleophiles. We also show that HMGA2 can be covalently trapped at genomic abasic sites in cancer cells. By employing a variety of cell-based assays, we provide evidence that the associated lyase activities promote cellular resistance against DNA damage that is targeted by base excision repair (BER) pathways, and that this protection directly correlates with the level of HMGA2 expression. In addition, we demonstrate an interaction between human AP endonuclease 1 and HMGA2 in cancer cells, which supports our conclusion that HMGA2 can be incorporated into the cellular BER machinery. Our study thus identifies an unexpected role for HMGA2 in DNA repair in cancer cells which has important clinical implications for disease diagnosis and therapy
Characterization of a new AAA+ protein from A. fulgidus and functional studies on chaperone-proteasome complexes in Archaea and Eubacteria
Denaturing Urea Polyacrylamide Gel Electrophoresis (Urea PAGE)
Urea PAGE or denaturing urea polyacrylamide gel electrophoresis employs 6-8 M urea, which denatures secondary DNA or RNA structures and is used for their separation in a polyacrylamide gel matrix based on the molecular weight. Fragments between 2 to 500 bases, with length differences as small as a single nucleotide, can be separated using this method1. The migration of the sample is dependent on the chosen acrylamide concentration. A higher percentage of polyacrylamide resolves lower molecular weight fragments. The combination of urea and temperatures of 45-55 °C during the gel run allows for the separation of unstructured DNA or RNA molecules
The High Mobility Group Protein HMGA2: A Co-Regulator of Chromatin Structure and Pluripotency in Stem Cells?
Residual Structure in Islet Amyloid Polypeptide Mediates Its Interactions with Soluble Insulin
Islet amyloid polypeptide (IAPP), a 37-amino acid polypeptide hormone of the calcitonin family, is colocalized and cosecreted with insulin in secretory granules of pancreatic islet β cells. IAPP can assemble into toxic oligomers and amyloid fibrils, a hallmark of type 2 diabetes. Its interactions with insulin in the secretory granules might influence the formation of cytotoxic oligomers and amyloid fibrils. Presented NMR analysis shows that IAPP, free in solution and in complex with insulin, retains elements of residual secondary structure. NMR chemical shifts and 15N relaxation data as well as 49 ns replica exchange molecular dynamic simulations indicate that the transiently populated helical structure in residues 11−18 is essential for interactions with insulin. These interactions are mediated by salt bridges between positively charged residues Arg11 or Arg18 of rat IAPP and Glu13 of insulin B chain as well as by hydrophobic interactions flanking the salt bridges. The insulin binding region is composed of the same amino acids in amyloidogenic human IAPP and soluble rat IAPP (with the sole exception of His/Arg-18), implying the same binding mode for both hormones. This His/Arg-18 mutation results in reduced affinity binding of human IAPP to insulin in comparison to rat IAPP as it is detected by surface plasmon resonance biosensor analysis. Implications of the described interactions between soluble forms of IAPP and insulin in preventing oligomerization of human IAPP are discussed
The High Mobility Group Protein HMGA2: A Co-Regulator of Chromatin Structure and Pluripotency in Stem Cells?
The mycobacterial Mpa–proteasome unfolds and degrades pupylated substrates by engaging Pup's N-terminus
Mycobacterium tuberculosis, along with other actinobacteria, harbours proteasomes in addition to members of the general bacterial repertoire of degradation complexes. In analogy to ubiquitination in eukaryotes, substrates are tagged for proteasomal degradation with prokaryotic ubiquitin-like protein (Pup) that is recognized by the N-terminal coiled-coil domain of the ATPase Mpa (also called ARC). Here, we reconstitute the entire mycobacterial proteasome degradation system for pupylated substrates and establish its mechanistic features with respect to substrate recruitment, unfolding and degradation. We show that the Mpa–proteasome complex unfolds and degrades Pup-tagged proteins and that this activity requires physical interaction of the ATPase with the proteasome. Furthermore, we establish the N-terminal region of Pup as the structural element required for engagement of pupylated substrates into the Mpa pore. In this process, Mpa pulls on Pup to initiate unfolding of substrate proteins and to drag them toward the proteasome chamber. Unlike the eukaryotic ubiquitin, Pup is not recycled but degraded with the substrate. This assigns a dual function to Pup as both the Mpa recognition element as well as the threading determinant
