157 research outputs found
Insulin Signaling Regulates Mitochondrial Function in Pancreatic β-Cells
Insulin/IGF-I signaling regulates the metabolism of most mammalian tissues including pancreatic islets. To dissect the mechanisms linking insulin signaling with mitochondrial function, we first identified a mitochondria-tethering complex in β-cells that included glucokinase (GK), and the pro-apoptotic protein, BADS. Mitochondria isolated from β-cells derived from β-cell specific insulin receptor knockout (βIRKO) mice exhibited reduced BADS, GK and protein kinase A in the complex, and attenuated function. Similar alterations were evident in islets from patients with type 2 diabetes. Decreased mitochondrial GK activity in βIRKOs could be explained, in part, by reduced expression and altered phosphorylation of BADS. The elevated phosphorylation of p70S6K and JNK1 was likely due to compensatory increase in IGF-1 receptor expression. Re-expression of insulin receptors in βIRKO cells partially restored the stoichiometry of the complex and mitochondrial function. These data indicate that insulin signaling regulates mitochondrial function and have implications for β-cell dysfunction in type 2 diabetes
Beneficial normalization of cardiac repolarization by carnitine in transgenic SQT1 rabbit models.
AIMS
Short-QT-syndrome type 1 (SQT1) is a genetic channelopathy caused by gain-of-function variants in HERG underlying the rapid delayed-rectifier K+ current (IKr), leading to QT-shortening, ventricular arrhythmias, and sudden cardiac death. Data on efficient pharmaco-therapy for SQT1 are scarce. In patients with primary carnitine-deficiency, acquired-SQTS has been observed and rescued by carnitine-supplementation. Here, we assessed whether carnitine exerts direct beneficial (prolonging) effects on cardiac repolarization in genetic SQTS.
METHODS AND RESULTS
Adult wild-type (WT) and transgenic SQT1 rabbits (HERG-N588K, gain of IKr) were used. In vivo ECGs, ex vivo monophasic action potentials (APs) in Langendorff-perfused hearts, and cellular ventricular APs and ion currents were assessed at baseline and during L-Carnitine/C16-Carnitine-perfusion. 2D computer simulations were performed to assess reentry-based VT-inducibility.L-Carnitine/C16-Carnitine prolonged QT intervals in WT and SQT1, leading to QT-normalization in SQT1. Similarly, monophasic and cellular AP duration (APD) was prolonged by L-Carnitine/C16-Carnitine in WT and SQT1. As underlying mechanisms, we identified acute effects on the main repolarizing ion currents: IKr-steady, which is pathologically increased in SQT1, was reduced by L-Carnitine/C16-Carnitine and deactivation kinetics were accelerated. Moreover, L-Carnitine/C16-Carnitine decreased IKs-steady and IK1. In silico modelling identified IKr-changes as main factor for L-Carnitine/C16-Carnitine-induced APD-prolongation. 2D-simulations revealed increased sustained reentry-based arrhythmia formation in SQT1 compared to WT, which was decreased to the WT-level when adding carnitine-induced ion current changes.
CONCLUSION
L-Carnitine/C16-Carnitine prolong/normalize QT and whole heart/cellular APD in SQT1 rabbits. These beneficial effects are mediated by acute effects on IKr. L-Carnitine may serve as potential future QT-normalizing, anti-arrhythmic therapy in SQT1
Circulating Autoantibodies Recognizing Immunodominant Epitopes From Human Apolipoprotein B Associate With Cardiometabolic Risk Factors, but Not With Atherosclerotic Disease
Rationale: Atherosclerosis is a chronic inflammatory disease of large arteries that involves an autoimmune response with autoreactive T cells and auto-antibodies recognizing Apolipoprotein B (ApoB), the core protein of low-density lipoprotein (LDL). Here, we aimed to establish a clinical association between circulating human ApoB auto-antibodies with atherosclerosis and its clinical risk factors using a novel assay to detect auto-antibodies against a pool of highly immunogenic ApoB-peptides. Methods and Results: To detect polyclonal IgM- and IgG-antibodies recognizing ApoB, we developed a chemiluminescent sandwich ELISA with 30 ApoB peptides selected by an in silico assay for a high binding affinity to MHC-II, which cover more than 80% of known MHC-II variants in a Caucasian population. This pre-selection of immunogenic self-peptides accounted for the high variability of human MHC-II, which is fundamental to allow T cell dependent generation of IgG antibodies. We quantified levels of ApoB-autoantibodies in a clinical cohort of 307 patients that underwent coronary angiography. Plasma anti-ApoB IgG and IgM concentrations showed no differences across healthy individuals (n = 67), patients with coronary artery disease (n = 179), and patients with an acute coronary syndrome (n = 61). However, plasma levels of anti-ApoB IgG, which are considered pro-inflammatory, were significantly increased in patients with obesity (p = 0.044) and arterial hypertension (p < 0.0001). In addition, patients diagnosed with the metabolic syndrome showed significantly elevated Anti-ApoB IgG (p = 0.002). Even when normalized for total plasma IgG, anti-ApoB IgG remained highly upregulated in hypertensive patients (p < 0.0001). We observed no association with triglycerides, total cholesterol, VLDL, or LDL plasma levels. However, total and normalized anti-ApoB IgG levels negatively correlated with HDL. In contrast, total and normalized anti-ApoB IgM, that have been suggested as anti-inflammatory, were significantly lower in diabetic patients (p = 0.012) and in patients with the metabolic syndrome (p = 0.005). Conclusion: Using a novel ELISA method to detect auto-antibodies against ApoB in humans, we show that anti-ApoB IgG associate with cardiovascular risk factors but not with the clinical appearance of atherosclerosis, suggesting that humoral immune responses against ApoB are shaped by cardiovascular risk factors but not disease status itself. This novel tool will be helpful to develop immune-based risk stratification for clinical atherosclerosis in the future.Fil: Marchini, Timoteo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular. Universidad de Buenos Aires. Facultad Medicina. Instituto de Bioquímica y Medicina Molecular; Argentina. Albert Ludwigs University of Freiburg; AlemaniaFil: Malchow, Sara. Albert Ludwigs University of Freiburg; AlemaniaFil: Caceres, Lourdes. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular. Universidad de Buenos Aires. Facultad Medicina. Instituto de Bioquímica y Medicina Molecular; Argentina. Albert Ludwigs University of Freiburg; AlemaniaFil: El Rabih, Abed Al Hadi. Albert Ludwigs University of Freiburg; AlemaniaFil: Hansen, Sophie. Albert Ludwigs University of Freiburg; AlemaniaFil: Mwinyella, Timothy. Albert Ludwigs University of Freiburg; AlemaniaFil: Spiga, Lisa. Albert Ludwigs University of Freiburg; AlemaniaFil: Piepenburg, Sven. Albert Ludwigs University of Freiburg; AlemaniaFil: Horstmann, Hauke. Albert Ludwigs University of Freiburg; AlemaniaFil: Olawale, Tijani. Albert Ludwigs University of Freiburg; AlemaniaFil: Li, Xiaowei. Albert Ludwigs University of Freiburg; AlemaniaFil: Mitre, Lucia Sol. Albert Ludwigs University of Freiburg; AlemaniaFil: Gissler, Mark Colin. Albert Ludwigs University of Freiburg; AlemaniaFil: Bugger, Heiko. University of Graz; AustriaFil: Zirlik, Andreas. University of Graz; AustriaFil: Heidt, Timo. Albert Ludwigs University of Freiburg; AlemaniaFil: Hilgendorf, Ingo. Albert Ludwigs University of Freiburg; AlemaniaFil: Stachon, Peter. Albert Ludwigs University of Freiburg; AlemaniaFil: von zur Muehlen, Constantin. Albert Ludwigs University of Freiburg; AlemaniaFil: Bode, Christoph. Albert Ludwigs University of Freiburg; AlemaniaFil: Wolf, Dennis. Albert Ludwigs University of Freiburg; Alemani
Platelet Serotonin Aggravates Myocardial Ischemia/Reperfusion Injury via Neutrophil Degranulation
Background: Platelets store large amounts of serotonin that they release during thrombus formation or acute inflammation. This facilitates hemostasis and modulates the inflammatory response. Methods: Infarct size, heart function, and inflammatory cell composition were analyzed in mouse models of myocardial reperfusion injury with genetic and pharmacological depletion of platelet serotonin. These studies were complemented by in vitro serotonin stimulation assays of platelets and leukocytes in mice and men, and by measuring plasma serotonin levels and leukocyte activation in patients with acute coronary syndrome. Results: Platelet-derived serotonin induced neutrophil degranulation with release of myeloperoxidase and hydrogen peroxide (H2O2) and increased expression of membrane-bound leukocyte adhesion molecule CD11b, leading to enhanced inflammation in the infarct area and reduced myocardial salvage. In patients hospitalized with acute coronary syndrome, plasmatic serotonin levels correlated with CD11b expression on neutrophils and myeloperoxidase plasma levels. Long-term serotonin reuptake inhibition - reported to protect patients with depression from cardiovascular events - resulted in the depletion of platelet serotonin stores in mice. These mice displayed a reduction in neutrophil degranulation and preserved cardiac function. In line, patients with depression using serotonin reuptake inhibition, presented with suppressed levels of CD11b surface expression on neutrophils and lower myeloperoxidase levels in blood. Conclusions: Taken together, we identify serotonin as a potent therapeutic target in neutrophil-dependent thromboinflammation during myocardial reperfusion injury.Fil: Mauler, Maximilian. No especifíca;Fil: Herr, Nadine. No especifíca;Fil: Schoenichen, Claudia. No especifíca;Fil: Witsch, Thilo. No especifíca;Fil: Marchini, Timoteo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular. Universidad de Buenos Aires. Facultad Medicina. Instituto de Bioquímica y Medicina Molecular; ArgentinaFil: Härdtner, Carmen. No especifíca;Fil: Koentges, Christoph. No especifíca;Fil: Kienle, Korbinian. Max Planck Institute Of Immunobiology And Epigenetics; AlemaniaFil: Ollivier, Véronique. Inserm; FranciaFil: Schell, Maximilian. No especifíca;Fil: Dorner, Ludwig. No especifíca;Fil: Wippel, Christopher. No especifíca;Fil: Stallmann, Daniela. No especifíca;Fil: Normann, Claus. No especifíca;Fil: Bugger, Heiko. No especifíca;Fil: Walther, Paul. Universitat Ulm; AlemaniaFil: Wolf, Dennis. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Ahrens, Ingo. No especifíca;Fil: Lämmermann, Tim. Max Planck Institute Of Immunobiology And Epigenetics; AlemaniaFil: Ho-Tin-Noé, Benoît. Inserm; FranciaFil: Ley, Klaus. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Bode, Christoph. No especifíca;Fil: Hilgendorf, Ingo. No especifíca;Fil: Duerschmied, Daniel. No especifíca
Mitochondrial Reactive Oxygen Species in Lipotoxic Hearts Induces Post-Translational Modifications of AKAP121, DRP1 and OPA1 That Promote Mitochondrial Fission
Rationale: Cardiac lipotoxicity, characterized by increased uptake, oxidation and accumulation of lipid intermediates, contributes to cardiac dysfunction in obesity and diabetes. However, mechanisms linking lipid overload and mitochondrial dysfunction are incompletely understood.
Objective: To elucidate the mechanisms for mitochondrial adaptations to lipid overload in postnatal hearts in vivo.
Methods and Results: Using a transgenic mouse model of cardiac lipotoxicity overexpressing long-chain acyl-CoA synthetase 1 in cardiomyocytes, we show that modestly increased myocardial fatty acid uptake leads to mitochondrial structural remodeling with significant reduction in minimum diameter. This is associated with increased palmitoyl-carnitine oxidation and increased reactive oxygen species (ROS) generation in isolated mitochondria. Mitochondrial morphological changes and elevated ROS generation are also observed in palmitate- treated neonatal rat ventricular cardiomyocytes (NRVCs). Palmitate exposure to NRVCs initially activates mitochondrial respiration, coupled with increased mitochondrial membrane potential and adenosine triphosphate (ATP) synthesis. However, long-term exposure to palmitate (\u3e8h) enhances ROS generation, which is accompanied by loss of the mitochondrial reticulum and a pattern suggesting increased mitochondrial fission. Mechanistically, lipid-induced changes in mitochondrial redox status increased mitochondrial fission by increased ubiquitination of A-kinase anchor protein (AKAP121) leading to reduced phosphorylation of DRP1 at Ser637 and altered proteolytic processing of OPA1. Scavenging mitochondrial ROS restored mitochondrial morphology in vivo and in vitro.
Conclusions: Our results reveal a molecular mechanism by which lipid overload-induced mitochondrial ROS generation causes mitochondrial dysfunction by inducing post-translational modifications of mitochondrial proteins that regulate mitochondrial dynamics. These findings provide a novel mechanism for mitochondrial dysfunction in lipotoxic cardiomyopathy.
38 pp; includes supplemental materials
Effects of Short Term Adiponectin Receptor Agonism on Cardiac Function and Energetics in Diabetic db/db Mice.
Objective
Impaired cardiac efficiency is a hallmark of diabetic cardiomyopathy in models of type 2 diabetes. Adiponectin receptor 1 (AdipoR1) deficiency impairs cardiac efficiency in non-diabetic mice, suggesting that hypoadiponectinemia in type 2 diabetes may contribute to impaired cardiac efficiency due to compromised AdipoR1 signaling. Thus, we investigated whether targeting cardiac adiponectin receptors may improve cardiac function and energetics, and attenuate diabetic cardiomyopathy in type 2 diabetic mice.
Methods
A non-selective adiponectin receptor agonist, AdipoRon, and vehicle were injected intraperitoneally into Eight-week-old db/db or C57BLKS/J mice for 10 days. Cardiac morphology and function were evaluated by echocardiography and working heart perfusions.
Results
Based on echocardiography, AdipoRon treatment did not alter ejection fraction, left ventricular diameters or left ventricular wall thickness in db/db mice compared to vehicle-treated mice. In isolated working hearts, an impairment in cardiac output and efficiency in db/db mice was not improved by AdipoRon. Mitochondrial respiratory capacity, respiration in the presence of oligomycin, and 4-hydroxynonenal levels were similar among all groups. However, AdipoRon induced a marked shift in the substrate oxidation pattern in db/db mice towards increased reliance on glucose utilization. In parallel, the diabetes-associated increase in serum triglyceride levels in vehicle-treated db/db mice was blunted by AdipoRon treatment, while an increase in myocardial triglycerides in vehicle-treated db/db mice was not altered by AdipoRon treatment.
Conclusion
AdipoRon treatment shifts myocardial substrate preference towards increased glucose utilization, likely by decreasing fatty acid delivery to the heart, but was not sufficient to improve cardiac output and efficiency in db/db mice
Mitochondrial Reactive Oxygen Species in Lipotoxic Hearts Induces Post-Translational Modifications of AKAP121, DRP1 and OPA1 That Promote Mitochondrial Fission
Rationale: Cardiac lipotoxicity, characterized by increased uptake, oxidation and accumulation of lipid intermediates, contributes to cardiac dysfunction in obesity and diabetes. However, mechanisms linking lipid overload and mitochondrial dysfunction are incompletely understood.
Objective: To elucidate the mechanisms for mitochondrial adaptations to lipid overload in postnatal hearts in vivo.
Methods and Results: Using a transgenic mouse model of cardiac lipotoxicity overexpressing long-chain acyl-CoA synthetase 1 in cardiomyocytes, we show that modestly increased myocardial fatty acid uptake leads to mitochondrial structural remodeling with significant reduction in minimum diameter. This is associated with increased palmitoyl-carnitine oxidation and increased reactive oxygen species (ROS) generation in isolated mitochondria. Mitochondrial morphological changes and elevated ROS generation are also observed in palmitate- treated neonatal rat ventricular cardiomyocytes (NRVCs). Palmitate exposure to NRVCs initially activates mitochondrial respiration, coupled with increased mitochondrial membrane potential and adenosine triphosphate (ATP) synthesis. However, long-term exposure to palmitate (\u3e8h) enhances ROS generation, which is accompanied by loss of the mitochondrial reticulum and a pattern suggesting increased mitochondrial fission. Mechanistically, lipid-induced changes in mitochondrial redox status increased mitochondrial fission by increased ubiquitination of A-kinase anchor protein (AKAP121) leading to reduced phosphorylation of DRP1 at Ser637 and altered proteolytic processing of OPA1. Scavenging mitochondrial ROS restored mitochondrial morphology in vivo and in vitro.
Conclusions: Our results reveal a molecular mechanism by which lipid overload-induced mitochondrial ROS generation causes mitochondrial dysfunction by inducing post-translational modifications of mitochondrial proteins that regulate mitochondrial dynamics. These findings provide a novel mechanism for mitochondrial dysfunction in lipotoxic cardiomyopathy.
38 pp; includes supplemental materials
Long term safety and outcomes after atrial shunting for heart failure with preserved or mildly reduced ejection fraction:5-year and 3-year follow-up in the REDUCE LAP-HF I and II trials
Background: There is a little evidence regarding long-term safety and efficacy for atrial shunt devices in heart failure (HF). Methods: The REDUCE LAP-HF I (n = 44) and II (n = 621) trials (RCT-I and -II) were multicenter, randomized, sham-controlled trials of patients with HF and ejection fraction >40%. Outcome data were analyzed from RCT-I, a mechanistic trial with 5-year follow-up, and RCT-II, a pivotal trial identifying a responder group (n = 313) defined by exercise PVR <1.74 WU and no cardiac rhythm management device with 3-year follow-up. Results: At 5 years in RCT I, there were no differences in cardiovascular (CV) mortality, HF events, embolic stroke, or new-onset atrial fibrillation between groups. After 3 years in RCT II, there was no difference in the primary outcome (hierarchical composite of CV mortality, stroke, HF events, and KCCQ) between shunt and sham in the overall trial. Compared to sham, those with responder characteristics in RCT-II had a better outcome with shunt (win ratio 1.6 [95% CI 1.2-2.2], P = .006; 44% reduction in HF events [shunt 9 vs. control 16 per 100 patient-years], P = .005; and greater improvement in KCCQ overall summary score [+17.9 ± 20.0 vs. +7.6 ± 20.4], P < .001), while nonresponders had significantly more HF events. Shunt treatment at 3 years was associated with a higher rate of ischemic stroke (3.2% vs. 0%, 95% CI 2%-6.1%, P = .032) and lower incidence of worsening kidney dysfunction (10.7% vs. 19.3%, P = .041). Conclusions: With up to 5 years of follow up, adverse events were low in patients receiving atrial shunts. In the responder group, atrial shunt treatment was associated with a significantly lower HF event rate and improved KCCQ compared to sham through 3 years of follow-up. Clinicaltrials.gov registration: NCT02600234, NCT03088033.</p
- …
