159 research outputs found
Recommended from our members
FUS Binds the CTD of RNA Polymerase II and Regulates its Phosphorylation at Ser2
Mutations in the RNA-binding protein FUS (fused in sarcoma)/TLS have been shown to cause the neurodegenerative disease amyotrophic lateral sclerosis (ALS), but the normal role of FUS is incompletely understood. We found that FUS binds the C-terminal domain (CTD) of RNA polymerase II (RNAP2) and prevents inappropriate hyperphosphorylation of Ser2 in the RNAP2 CTD at thousands of human genes. The loss of FUS leads to RNAP2 accumulation at the transcription start site and a shift in mRNA isoform expression toward early polyadenylation sites. Thus, in addition to its role in alternative RNA splicing, FUS has a general function in orchestrating CTD phosphorylation during RNAP2 transcription
Use of the Frank sequence in pulsed EPR
The Frank polyphase sequence has been applied to pulsed EPR of triarylmethyl radicals at 256 MHz (9.1 mT magnetic field), using 256 phase pulses. In EPR, as in NMR, use of a Frank sequence of phase steps permits pulsed FID signal acquisition with very low power microwave/RF pulses (ca. 1.5 mW in the application reported here) relative to standard pulsed EPR. A 0.2 mM aqueous solution of a triarylmethyl radical was studied using a 16 mm diameter cross loop resonator to isolate the EPR signal detection system from the incident pulses
Recommended from our members
GIS Method for Developing Wind Supply Curves
This report describes work conducted by the National Renewable Energy Laboratory (NREL) as part of the Wind Technology Partnership (WTP) sponsored by the U.S. Environmental Protection Agency (EPA). This project has developed methods that the National Development and Reform Commission (NDRC) intends to use in the planning and development of China's 30 GW of planned capacity. Because of China's influence within the community of developing countries, the methods and the approaches here may help foster wind development in other countries
Renewable Energy Assessment of Bureau of Reclamation Land and Facilities Using Geographic Information Systems
This report summarizes results of geographic information system screening for solar and wind potential at select Bureau of Reclamation lands in the western United States. The study included both utility-scale and facility-scale potential. This study supplements information in the report titled Renewable Energy Assessment for the Bureau of Reclamation: Final Report
Recommended from our members
Long-Term National Impacts of State-Level Policies
This paper presents analysis conducted with the Wind Deployment System Model (WinDS) -- a model of capacity expansion in the U.S. electric sector. With 358 regions covering the United States, detailed transmission system representation, and an explicit treatment of wind intermittency and ancillary services, WinDS is uniquely positioned to evaluate the market impacts of specific state-level policies. This paper provides analysis results regarding the impact of existing state-level policies designed to promote wind-capacity expansion, including state portfolio standards, mandates, and tax credits. The results show the amount of wind deployment due to current state-level incentives as well as examine their lasting impact on the national wind industry. For example, state-level mandates increase industry size and lower costs, which result in wind capacity increases in states without mandates and greater market growth even after the policies expire. Although these policies are enacted by individual states, the cumulative effect must be examined at a national level. Finally, this paper examines the impact on wind-capacity growth by increasing the penalty associated with the state-level renewable portfolio standards (RPS). The results show national and regional wind energy deployment and generation through 2050
Recommended from our members
WinDS-H2 Model and Analysis
A PowerPoint presentation given as part of the 2005 Hydrogen Program Review, May 23-26, 2005, in Washington, D.C
Recommended from our members
Impacts from Deployment Barriers on the United States Wind Power Industry: Overview & Preliminary Findings
Regardless of cost and performance some wind projects are unable to proceed to commissioning as a result of deployment barriers. Principal deployment barriers in the industry today include: wildlife, public acceptance, access to transmission, and radar. To date, methods for understanding these non-technical barriers have failed to accurately characterize the costs imposed by deployment barriers and the degree of impact to the industry. Analytical challenges include limited data and modeling capabilities. Changes in policy and regulation, among other factors, also add complexity to analysis of impacts from deployment barriers. This presentation details preliminary results from new NREL analysis focused on quantifying the impact of deployment barriers on the wind resource of the United States, the installed cost of wind projects, and the total electric power system cost of a 20% wind energy future. In terms of impacts to wind project costs and developable land, preliminary findings suggest that deployment barriers are secondary to market drivers such as demand. Nevertheless, impacts to wind project costs are on the order of $100/kW and a substantial share of the potentially developable windy land in the United States is indeed affected by deployment barriers
Recommended from our members
Technical Potential of Solar Energy to Address Energy Poverty and Avoid GHG Emissions in Africa (Poster)
Approximately 1.6 billion people worldwide do not have access to electricity, and roughly 2.4 billion people rely on traditional biomass fuels to meet their heating and cooking needs. Lack of access to and use of energy - or energy poverty - has been recognized as a barrier to reaching the Millennium Development Goals (MDGs) and other targeted efforts to improve health and quality of life. Reducing reliance on traditional biomass can substantially reduce indoor air pollution-related morbidity and mortality; increasing access to lighting and refrigeration can improve educational and economic opportunities. Though targeted electrification efforts have had success within Latin America and East Asia (reaching electrification rates above 85%), sub-Saharan Africa has maintained electrification rates below 25% (IEA 2004)
U.S. Renewable Energy Technical Potentials. A GIS-Based Analysis
This report presents the state-level results of a spatial analysis effort calculating energy technical potential, reported in square kilometers of available land, megawatts of capacity, and gigawatt-hours of generation, for six different renewable technologies. For this analysis, the system specific power density (or equivalent), efficiency (capacity factor), and land-use constraints were identified for each technology using independent research, published research, and professional contacts. This report also presents technical potential findings from previous reports
Recommended from our members
Assessment of Offshore Wind Energy Potential in the United States (Poster)
The development of an offshore wind resource database is one of the first steps necessary to understand the magnitude of the resource and to plan the distribution and development of future offshore wind power facilities. The U.S. Department of Energy supported the production of offshore wind resource maps and potential estimates for much of the United States. This presentation discusses NREL's 2010 offshore wind resources report; current U.S., regional, and state offshore maps; methodology for the wind mapping and validation; wind potential estimates; the Geographic Information Systems database; and future work and conclusions
- …
