4,088 research outputs found

    Sensitivity of depth of maximum and absorption depth of EAS to hadron production mechanism

    Get PDF
    Comparison of experimental data on depth of extensive air showers (EAS) development maximum in the atmosphere, T sub M and path of absorption, lambda, in the lower atmosphere of EAS with fixed particle number in the energy region eV with the results of calculation show that these parameters are sensitive mainly to the inelastic interaction cross section and scaling violation in the fragmentation and pionization region. The data are explained in a unified manner within the framework of a model in which scaling is violated slightly in the fragmentation region and strongly in the pionization region at primary cosmic rays composition close to the normal one and a permanent increase of inelastic interaction cross section. It is shown that, while interpreting the experimental data, disregard of two methodical points causes a systematic shift in T sub M: (1) shower selection system; and (2) EAS electron lateral distribution when performing the calculations on basis of which the transfer is made from the Cerenkov pulse FWHM to the depth of shower maximum, T sub M

    The electromagnetic component of albedo from superhigh energy cascades in dense media

    Get PDF
    Albedo from cascades induced in iron by high energy gamma quanta were Monte Carlo simulated. Thereafter the albedo electromagnetic component from proton induced cascades were calculated analytically. The calculations showed that the albedo electromagnetic component increases more rapidly than the nuclear active component and will dominate at sufficiently high energies

    Expected exponential loss for gaze-based video and volume ground truth annotation

    Full text link
    Many recent machine learning approaches used in medical imaging are highly reliant on large amounts of image and ground truth data. In the context of object segmentation, pixel-wise annotations are extremely expensive to collect, especially in video and 3D volumes. To reduce this annotation burden, we propose a novel framework to allow annotators to simply observe the object to segment and record where they have looked at with a \$200 eye gaze tracker. Our method then estimates pixel-wise probabilities for the presence of the object throughout the sequence from which we train a classifier in semi-supervised setting using a novel Expected Exponential loss function. We show that our framework provides superior performances on a wide range of medical image settings compared to existing strategies and that our method can be combined with current crowd-sourcing paradigms as well.Comment: 9 pages, 5 figues, MICCAI 2017 - LABELS Worksho

    Superconducting and Normal State Properties of Heavily Hole-Doped Diamond

    Full text link
    We report measurements of the specific heat, Hall effect, upper critical field and resistivity on bulk, B-doped diamond prepared by reacting amorphous B and graphite under high-pressure/high-temperature conditions. These experiments establish unambiguous evidence for bulk superconductivity and provide a consistent set of materials parameters that favor a conventional, weak coupling electron-phonon interpretation of the superconducting mechanism at high hole doping.Comment: 10 pages, 3 figure

    Which graph states are useful for quantum information processing?

    Full text link
    Graph states are an elegant and powerful quantum resource for measurement based quantum computation (MBQC). They are also used for many quantum protocols (error correction, secret sharing, etc.). The main focus of this paper is to provide a structural characterisation of the graph states that can be used for quantum information processing. The existence of a gflow (generalized flow) is known to be a requirement for open graphs (graph, input set and output set) to perform uniformly and strongly deterministic computations. We weaken the gflow conditions to define two new more general kinds of MBQC: uniform equiprobability and constant probability. These classes can be useful from a cryptographic and information point of view because even though we cannot do a deterministic computation in general we can preserve the information and transfer it perfectly from the inputs to the outputs. We derive simple graph characterisations for these classes and prove that the deterministic and uniform equiprobability classes collapse when the cardinalities of inputs and outputs are the same. We also prove the reversibility of gflow in that case. The new graphical characterisations allow us to go from open graphs to graphs in general and to consider this question: given a graph with no inputs or outputs fixed, which vertices can be chosen as input and output for quantum information processing? We present a characterisation of the sets of possible inputs and ouputs for the equiprobability class, which is also valid for deterministic computations with inputs and ouputs of the same cardinality.Comment: 13 pages, 2 figure

    Single-parameter non-adiabatic quantized charge pumping

    Full text link
    Controlled charge pumping in an AlGaAs/GaAs gated nanowire by single-parameter modulation is studied experimentally and theoretically. Transfer of integral multiples of the elementary charge per modulation cycle is clearly demonstrated. A simple theoretical model shows that such a quantized current can be generated via loading and unloading of a dynamic quasi-bound state. It demonstrates that non-adiabatic blockade of unwanted tunnel events can obliterate the requirement of having at least two phase-shifted periodic signals to realize quantized pumping. The simple configuration without multiple pumping signals might find wide application in metrological experiments and quantum electronics.Comment: 4 pages, 4 figure

    Robust single-parameter quantized charge pumping

    Full text link
    This paper investigates a scheme for quantized charge pumping based on single-parameter modulation. The device was realized in an AlGaAs-GaAs gated nanowire. We find a remarkable robustness of the quantized regime against variations in the driving signal, which increases with applied rf power. This feature together with its simple configuration makes this device a potential module for a scalable source of quantized current.Comment: Submitted to Appl. Phys. Let

    Coherent control of trapped ions using off-resonant lasers

    Full text link
    In this paper we develop a unified framework to study the coherent control of trapped ions subject to state-dependent forces. Taking different limits in our theory, we can reproduce two different designs of a two-qubit quantum gate --the pushing gate [1] and the fast gates based on laser pulses from Ref. [2]--, and propose a new design based on continuous laser beams. We demonstrate how to simulate Ising Hamiltonians in a many ions setup, and how to create highly entangled states and induce squeezing. Finally, in a detailed analysis we identify the physical limits of this technique and study the dependence of errors on the temperature. [1] J.I. Cirac, P. Zoller, Nature, 404, 579, 2000. [2] J.J. Garcia-Ripoll, P. Zoller, J.I. Cirac, PRL 67, 062318, 200

    State-dependent, addressable subwavelength lattices with cold atoms

    Full text link
    We discuss how adiabatic potentials can be used to create addressable lattices on a subwavelength scale, which can be used as a tool for local operations and readout within a lattice substructure, while taking advantage of the faster timescales and higher energy and temperature scales determined by the shorter lattice spacing. For alkaline-earth-like atoms with non-zero nuclear spin, these potentials can be made state dependent, for which we give specific examples with 171^{171}Yb atoms. We discuss in detail the limitations in generating the lattice potentials, in particular non-adiabatic losses, and show that the loss rates can always be made exponentially small by increasing the laser power.Comment: replaced with the published version. 23 pages, 11 figure
    corecore