2,718 research outputs found

    A density functional approach to ferrogels

    Full text link
    Ferrogels consist of magnetic colloidal particles embedded in an elastic polymer matrix. As a consequence, their structural and rheological properties are governed by a competition between magnetic particle-particle interactions and mechanical matrix elasticity. Typically, the particles are permanently fixed within the matrix, which makes them distinguishable by their positions. Over time, particle neighbors do not change due to the fixation by the matrix. Here we present a classical density functional approach for such ferrogels. We map the elastic matrix-induced interactions between neighboring colloidal particles distinguishable by their positions onto effective pairwise interactions between indistinguishable particles similar to a "pairwise pseudopotential". Using Monte-Carlo computer simulations, we demonstrate for one-dimensional dipole-spring models of ferrogels that this mapping is justified. We then use the pseudopotential as an input into classical density functional theory of inhomogeneous fluids and predict the bulk elastic modulus of the ferrogel under various conditions. In addition, we propose the use of an "external pseudopotential" when one switches from the viewpoint of a one-dimensional dipole-spring object to a one-dimensional chain embedded in an infinitely extended bulk matrix. Our mapping approach paves the way to describe various inhomogeneous situations of ferrogels using classical density functional concepts of inhomogeneous fluids.Comment: 14 pages, 14 figure

    Nationwide forestry applications program. Analysis of forest classification accuracy

    Get PDF
    The development of LANDSAT classification accuracy assessment techniques, and of a computerized system for assessing wildlife habitat from land cover maps are considered. A literature review on accuracy assessment techniques and an explanation for the techniques development under both projects are included along with listings of the computer programs. The presentations and discussions at the National Working Conference on LANDSAT Classification Accuracy are summarized. Two symposium papers which were published on the results of this project are appended

    Electrokinetic and hydrodynamic properties of charged-particles systems: From small electrolyte ions to large colloids

    Get PDF
    Dynamic processes in dispersions of charged spherical particles are of importance both in fundamental science, and in technical and bio-medical applications. There exists a large variety of charged-particles systems, ranging from nanometer-sized electrolyte ions to micron-sized charge-stabilized colloids. We review recent advances in theoretical methods for the calculation of linear transport coefficients in concentrated particulate systems, with the focus on hydrodynamic interactions and electrokinetic effects. Considered transport properties are the dispersion viscosity, self- and collective diffusion coefficients, sedimentation coefficients, and electrophoretic mobilities and conductivities of ionic particle species in an external electric field. Advances by our group are also discussed, including a novel mode-coupling-theory method for conduction-diffusion and viscoelastic properties of strong electrolyte solutions. Furthermore, results are presented for dispersions of solvent-permeable particles, and particles with non-zero hydrodynamic surface slip. The concentration-dependent swelling of ionic microgels is discussed, as well as a far-reaching dynamic scaling behavior relating colloidal long- to short-time dynamics

    Measurements of complex permittivity of microwave substrates in the 20 to 300 K temperature range from 26.5 to 40.0 GHz

    Get PDF
    A knowledge of the dielectric properties of microwave substrates at low temperatures is useful in the design of superconducting microwave circuits. Results are reported for a study of the complex permittivity of sapphire (Al2O3), magnesium oxide (MgO), silicon oxide (SiO2), lanthanum aluminate (LaAlO3), and zirconium oxide (ZrO2), in the 20 to 300 Kelvin temperature range, at frequencies from 26.5 to 40.0 GHz. The values of the real and imaginary parts of the complex permittivity were obtained from the scattering parameters, which were measured using a HP-8510 automatic network analyzer. For these measurements, the samples were mounted on the cold head of a helium gas closed cycle refrigerator, in a specially designed vacuum chamber. An arrangement of wave guides, with mica windows, was used to connect the cooling system to the network analyzer. A decrease in the value of the real part of the complex permittivity of these substrates, with decreasing temperature, was observed. For MgO and Al2O3, the decrease from room temperature to 20 K was of 7 and 15 percent, respectively. For LaAlO3, it decreased by 14 percent, for ZrO2 by 15 percent, and for SiO2 by 2 percent, in the above mentioned temperature range

    Tolerance without clonal expansion: Self-antigen-expressing B cells program self-reactive T cells for future deletion

    Get PDF
    B cells have been shown in various animal models to induce immunological tolerance leading to reduced immune responses and protection from autoimmunity. We show that interaction of B cells with naive T cells results in T cell triggering accompanied by the expression of negative costimulatory molecules such as PD-1, CTLA-4, B and T lymphocyte attenuator, and CD5. Following interaction with B cells, T cells were not induced to proliferate, in a process that was dependent on their expression of PD-1 and CTLA-4, but not CD5. In contrast, the T cells became sensitive to Ag-induced cell death. Our results demonstrate that B cells participate in the homeostasis of the immune system by ablation of conventional self-reactive T cells

    A push to cycling - Exploring the e-bike’s role in overcoming barriers to bicycle use with a survey and an intervention study

    Get PDF
    In Norway, as in many countries, there is a political goal to increase bicycle use. The electric bicycle (e-bike) is a promising tool for achieving this goal, given the hilliness of the country. However, little is yet known about the deterrents of cycling in Norway in general, and in particular how the purchase of an e-bike could be stimulated. In the current study, 5500 respondents from a convenience sample among car owners were asked about their perceptions of bicycling in general, and of e-bikes in particular as well as their willingness to pay for an e-bike. Randomly selected participants (N=66) were given access to an e-bike for a limited time (2 or 4 weeks). A second questionnaire captured the same perceptions and willingness to pay post-intervention. Results were compared with a control group (N=214). The results showed that those who cycle the least were most interested in buying an e-bike and that prior knowledge of the e-bike corresponded with a higher desire to buy one. Pro-environmental values did not predict interest in e-bikes, neither did norms and attitudes towards cycling. The willingness to pay for an e-bike increased after having experienced the benefits for those who used an e-bike compared to those who did not. Price reduction of the e-bike (e.g. VAT exemption), spread of knowledge among the wider population, and actions to offer an e-bike experience may therefore be effective strategies for further expansion of the e-bike in the transport system and thereby to increase bicycle use in Norway

    Signature of metastable electrons in highly charged ion surface interactions

    Get PDF
    We present autoionization spectra of metastable Ar(8+) and C(4+), N(5+), O(6+) and Ne(8+) scattering off an Al(111) surface with incident energies down to 5 eV. The unprecedented quality of the experimental data permits the observation of a unique, yet undiscovered peak in the structures originating from the metastable projectiles compared to corresponding ground state configurations. Analyzing the peak positions for different projectile species and velocities we demonstrate that the peak must be ascribed to an above-surface transition under participation of the metastable state.Comment: 12 pages, 3 figures, http://pikp28.uni-muenster.de/~ducre

    Millimeter wave transmission studies of YBa2Cu3O7-delta thin films in the 26.5 to 40.0 GHz frequency range

    Get PDF
    Millimeter wave transmission measurements through YBa2Cu3O(7-delta) thin films on MgO, ZrO2 and LaAlO3 substrates, are reported. The films (approx. 1 micron) were deposited by sequential evaporation and laser ablation techniques. Transition temperatures T sub c, ranging from 89.7 K for the Laser Ablated film on LaAlO3 to approximately 72 K for the sequentially evaporated film on MgO, were obtained. The values of the real and imaginary parts of the complex conductivity, sigma 1 and sigma 2, are obtained from the transmission data, assuming a two fluid model. The BCS approach is used to calculate values for an effective energy gap from the obtained values of sigma sub 1. A range of gap values from 2 DELTA o/K sub B T sub c = 4.19 to 4.35 was obtained. The magnetic penetration depth is evaluated from the deduced values of sigma 2. These results are discussed together with the frequency dependence of the normalized transmission amplitude, P/P sub c, below and above T sub c
    corecore