127 research outputs found
Embodied Evolution in Collective Robotics: A Review
This paper provides an overview of evolutionary robotics techniques applied
to on-line distributed evolution for robot collectives -- namely, embodied
evolution. It provides a definition of embodied evolution as well as a thorough
description of the underlying concepts and mechanisms. The paper also presents
a comprehensive summary of research published in the field since its inception
(1999-2017), providing various perspectives to identify the major trends. In
particular, we identify a shift from considering embodied evolution as a
parallel search method within small robot collectives (fewer than 10 robots) to
embodied evolution as an on-line distributed learning method for designing
collective behaviours in swarm-like collectives. The paper concludes with a
discussion of applications and open questions, providing a milestone for past
and an inspiration for future research.Comment: 23 pages, 1 figure, 1 tabl
Tutorials at PPSN 2016
PPSN 2016 hosts a total number of 16 tutorials covering a broad range of current research in evolutionary computation. The tutorials range from introductory to advanced and specialized but can all be attended without prior requirements. All PPSN attendees are cordially invited to take this opportunity to learn about ongoing research activities in our field
Importance of Parameter Settings on the Benefits of Robot-to-Robot Learning in Evolutionary Robotics
Robot-to-robot learning, a specific case of social learning in robotics, enables multiple robots to share learned skills while completing a task. The literature offers various statements of its benefits. Robots using this type of social learning can reach a higher performance, an increased learning speed, or both, compared to robots using individual learning only. No general explanation has been advanced for the difference in observations, which make the results highly dependent on the particular system and parameter setting. In this paper, we perform a detailed analysis into the effects of robot-to-robot learning. As a result, we show that this type of social learning can reduce the sensitivity of the learning process to the choice of parameters in two ways. First, robot-to-robot learning can reduce the number of bad performing individuals in the population. Second, robot-to-robot learning can increase the chance of having a successful run, where success is defined as the presence of a high performing individual. Additionally, we show that robot-to-robot learning results in an increased learning speed for almost all parameter settings. Our results indicate that robot-to-robot learning is a powerful mechanism which leads to benefits in both performance and learning speed
Case Review of Impacted Bile Duct Stone at Duodenal Papilla: Detection and Endoscopic Treatment
Dynamics of nitrate and nitrite content during storage of home-made and small-scale industrially produced raw vegetable juices and their dietary intake
- …
