672 research outputs found
Orographic Effects and Evaporative Cooling along a Subtropical Cold Front: The Case of the Spectacular Saharan Dust Outbreak of March 2004
On 2 March 2004 a marked upper-level trough and an associated surface cold front penetrated into the Sahara. High winds along and behind this frontal system led to an extraordinary, large-scale, and long-lived dust out reak, accompanied by significant precipitation over parts of Algeria, Tunisia, and Libya. This paper uses sensitivity simulations with the limited-area model developed by the Consortium for Small-Scale Modeling (COSMO) together with analysis data and surface observations to test several hypotheses on the dynamics of this case proposedin previous work. It is demonstrated that air over central Algeria is cooled by evaporation of frontal precipitation, substantially enhancing winds at the leading edge of the cold front. This process is supported by very drylow-level air in the lee of the Atlas Mountains associated with a foehn situation. Flattening the mountain chain in a sensitivity experiment, however, has complex effects on the wind. While reduced evaporative cooling weakens the front, the elimination of the orographic blocking accelerates its penetration into the Sahara. The simulations also indicate high winds associated with a hydraulic jump at the southern slopes of the Tell Atlas. Feedingthe simulated winds into a dust emission parameterization reveals reduced emissions on the order of 20%-30% for suppressed latent heating and even more when effects of the increased precipitation on soil moisture are considered. In the experiment with the Atlas removed, effects of the overall increase in high winds are compensated by an increase in precipitation. The results suggest that a realistic representation of frontal precipitation is an important requisite to accurately model dust emission in such situations
New developments in the representation of Saharan dust sources in the aerosol–climate model ECHAM6-HAM2
In the aerosol–climate model ECHAM6-HAM2, dust source activation (DSA)
observations from Meteosat Second Generation (MSG) satellite are proposed to
replace the original source area parameterization over the Sahara Desert.
The new setup is tested in nudged simulations for the period 2007 to 2008.
The evaluation is based on comparisons to dust emission events inferred from
MSG dust index imagery, Aerosol Robotic Network (AERONET) sun photometer observations, and satellite
retrievals of aerosol optical thickness (AOT).<br><br>The model results agree well with AERONET measurements especially in terms
of seasonal variability, and a good spatial correlation was found between
model results and MSG-SEVIRI (Spinning-Enhanced Visible and InfraRed Imager) dust AOT as well as Multi-angle Imaging SpectroRadiometer (MISR) AOT. ECHAM6-HAM2 computes a more realistic
geographical distribution and up to 20 % higher annual Saharan dust
emissions, using the MSG-based source map. The representation of dust AOT is
partly improved in the southern Sahara and Sahel. In addition, the spatial
variability is increased towards a better agreement with observations
depending on the season. Thus, using the MSG DSA map can help to circumvent
the issue of uncertain soil input parameters.<br><br>An important issue remains the need to improve the model representation of
moist convection and stable nighttime conditions. Compared to sub-daily DSA
information from MSG-SEVIRI and results from a regional model, ECHAM6-HAM2
notably underestimates the important fraction of morning dust events by the
breakdown of the nocturnal low-level jet, while a major contribution is from
afternoon-to-evening emissions
Idealized large-eddy simulations of nocturnal low-level jets over subtropical desert regions and implications for dust-generating winds
Nocturnal low-level jets (LLJs) are maxima in the wind profile, which often form above the stable nocturnal boundary layer. Over the Sahara, the world's largest source of mineral dust, this phenomenon is of particular importance to the emission and transport of desert aerosol. We present the first ever detailed large-eddy simulations of dust-generating LLJs. Using sensitivity studies with the UK Met Office large-eddy model (LEM), two key controls of the nocturnal LLJ are investigated: surface roughness and the Coriolis force. Functional relationships derived from the LEM results help to identify optimal latitude-roughness configurations for a maximum LLJ enhancement. Ideal conditions are found in regions between 20 and 27°N with roughness lengths >0.0001 m providing long oscillation periods and large jet amplitudes. Typical LLJ enhancements reach up to 3.5 m s-1 for geostrophic winds of 10 m s-1. The findings are largely consistent with results from a theoretical LLJ model applied for comparison. The results demonstrate the importance of latitude and roughness in creating regional patterns of LLJ influence. Combining the functional relationships with high-resolution roughness data over northern Africa gives good agreement with the location of morning dust uplift in satellite observations. It is shown that shear-induced mixing plays an important role for the LLJ evolution and surface gustiness. With decreasing latitude the LLJ oscillation period is longer and, thus, shear-induced mixing is weaker, allowing a more stable nocturnal stratification to develop. This causes a later and more abrupt LLJ breakdown in the morning with stronger gusts, which can compensate for the slower LLJ evolution that leads to a weaker jet maximum. The findings presented here can serve as the first step towards a parametrization to improve the representation of the effects of nocturnal LLJs on dust emission in coarser-resolution models.European Research Counci
Effects of circadian rhythm phase alteration on physiological and psychological variables: Implications to pilot performance (including a partially annotated bibliography)
The effects of environmental synchronizers upon circadian rhythmic stability in man and the deleterious alterations in performance and which result from changes in this stability are points of interest in a review of selected literature published between 1972 and 1980. A total of 2,084 references relevant to pilot performance and circadian phase alteration are cited and arranged in the following categories: (1) human performance, with focus on the effects of sleep loss or disturbance and fatigue; (2) phase shift in which ground based light/dark alteration and transmeridian flight studies are discussed; (3) shiftwork; (4)internal desynchronization which includes the effect of evironmental factors on rhythmic stability, and of rhythm disturbances on sleep and psychopathology; (5) chronotherapy, the application of methods to ameliorate desynchronization symptomatology; and (6) biorythm theory, in which the birthdate based biorythm method for predicting aircraft accident susceptability is critically analyzed. Annotations are provided for most citations
Simulations of convectively-driven density currents in the Atlas region using a regional model: Impacts on dust emission and sensitivity to horizontal resolution and convection schemes
During the SAMUM field campaign in southern Morocco in May and June 2006 density currents generated by evaporative cooling after convective precipitation were frequently observed at the Sahara side of the Atlas Mountain chain. The associated strong surface cold-air outflow during such events has been observed to lead to dust mobilization in the foothills. Here a regional model system is used to simulate a density current case on 3 June 2006 and the subsequent dust emission. The model studies are performed with different parameterization schemes for convection, and with different horizontal model grid resolutions to examine to which extent the model system can be used for reproducing dust emissions in this region. The effect of increasing the horizontal model grid resolution from 14 km to 2.8 km on the strength on the density currents and thus on dust emission is smaller than the differences due to different convection parameterization schemes in this case study. While the results in reproducing the observed density current at the Atlas Mountain varied with different convection parameterizations, the most realistic representation of the density current is obtained at 2.8 km grid resolution at which no parameterization of deep convection is needed
A process-based evaluation of dust-emitting winds in the CMIP5 simulation of HadGEM2-ES
Despite the importance of dust aerosol in the Earth system, state-of-the-art models show a large variety for North African dust emission. This study presents a systematic evaluation of dust emitting-winds in 30 years of the historical model simulation with the UK Met Office Earth-system model HadGEM2-ES for the Coupled Model Intercomparison Project Phase 5. Isolating the effect of winds on dust emission and using an automated detection for nocturnal low-level jets (NLLJs) allow an in-depth evaluation of the model performance for dust emission from a meteorological perspective. The findings highlight that NLLJs are a key driver for dust emission in HadGEM2-ES in terms of occurrence frequency and strength. The annually and spatially averaged occurrence frequency of NLLJs is similar in HadGEM2-ES and ERA-Interim from the European Centre for Medium-Range Weather Forecasts. Compared to ERA-Interim, a stronger pressure ridge over northern Africa in winter and the southward displaced heat low in summer result in differences in location and strength of NLLJs. Particularly the larger geostrophic winds associated with the stronger ridge have a strengthening effect on NLLJs over parts of West Africa in winter. Stronger NLLJs in summer may rather result from an artificially increased mixing coefficient under stable stratification that is weaker in HadGEM2-ES. NLLJs in the Bodélé Depression are affected by stronger synoptic-scale pressure gradients in HadGEM2-ES. Wintertime geostrophic winds can even be so strong that the associated vertical wind shear prevents the formation of NLLJs. These results call for further model improvements in the synoptic-scale dynamics and the physical parametrization of the nocturnal stable boundary layer to better represent dust-emitting processes in the atmospheric model. The new approach could be used for identifying systematic behavior in other models with respect to meteorological processes for dust emission. This would help to improve dust emission simulations and contribute to decreasing the currently large uncertainty in climate change projections with respect to dust aerosol
Does STEM Integration in High School Mathematics Classes in Underserved Schools Benefit Students\u27 Standardized Testing Outcomes?
STEM education in Indiana has become increasingly popular with, among many other factors, the recent focus by the Indiana Department of Education on the STEM workforce pipeline and school STEM certification (IDoE, 2023b). Some previous research has shown that integrating STEM into science classes and afterschool spaces has helped students from low-income communities catch up to their higher-income peers on assessments like high-stakes standardized testing (Bartell et al., 2008; Hurley, 2001; Weissglass, 2011). However, regarding STEM integration into mathematics classes, it can be more challenging than integration into other classes like science (Walker, 2016) and large gaps remain in the research of STEM integration into mathematics courses (English, 2016) . This study looks specifically at high school mathematics classrooms in a low-income community in Indiana. Mathematics-focused lessons with varying degrees of STEM components integrated were taught an average of one lesson every two weeks over an entire school year in a 9th grade Algebra classroom. Pre- and post- ACT Aspire scores were analyzed for growth, comparing students who received the STEM-integrated mathematics lessons and students who took the same course at the same school but received traditional, non-STEM mathematics courses. While the students who received the STEM integration improved on the ACT Aspire at a higher rate than the other students, the growth was not statistically significant. This study ends with suggestions for improving the methods for this specific study and other next steps in investigating the benefits of STEM integration in mathematics courses in schools from underserved communities
- …
