1,057 research outputs found

    Clinical effects of natalizumab on multiple sclerosis appear early in treatment course

    Get PDF
    In clinical practice natalizumab is typically used in patients who have experienced breakthrough disease during treatment with interferon beta (IFNβ) or glatiramer acetate. In these patients it is important to reduce disease activity as quickly as possible. In a phase II study, differences between natalizumab and placebo in MRI outcomes reflecting inflammatory activity were evident after the first infusion and maintained through a 6-month period, suggesting a rapid onset of natalizumab treatment effects. To explore how soon after natalizumab initiation clinical effects become apparent, annualized relapse rates per 3-month period and time to first relapse were analyzed in the phase III AFFIRM study (natalizumab vs. placebo) and in the multinational Tysabri® Observational Program (TOP). In AFFIRM, natalizumab reduced the annualized relapse rate within 3months of treatment initiation compared with placebo in the overall population (0.30 vs. 0.71; p<0.0001) and in patients with highly active disease (0.30 vs. 0.94; p=0.0039). The low annualized relapse rate was maintained throughout the 2-year study period, and the risk of relapse in AFFIRM patients treated with natalizumab was reduced [hazard ratio against placebo 0.42 (95% CI 0.34-0.52); p<0.0001]. Rapid reductions in annualized relapse rate also occurred in TOP (baseline 1.99 vs. 0-3months 0.26; p<0.0001). Natalizumab resulted in rapid, sustained reductions in disease activity in both AFFIRM and in clinical practice. This decrease in disease activity occurred within the first 3months of treatment even in patients with more active diseas

    Excitotoxic neuronal cell death during an oligodendrocyte-directed CD8+ T cell attack in the CNS gray matter

    Full text link
    Background: Neural-antigen reactive cytotoxic CD8+ T cells contribute to neuronal dysfunction and degeneration in a variety of inflammatory CNS disorders. Facing excess numbers of target cells, CNS-invading CD8+ T cells cause neuronal cell death either via confined release of cytotoxic effector molecules towards neurons, or via spillover of cytotoxic effector molecules from 'leaky’ immunological synapses and non-confined release by CD8+ T cells themselves during serial and simultaneous killing of oligodendrocytes or astrocytes. Methods: Wild-type and T cell receptor transgenic CD8+ T cells were stimulated in vitro, their activation status was assessed by flow cytometry, and supernatant glutamate levels were determined using an enzymatic assay. Expression regulation of molecules involved in vesicular glutamate release was examined by quantitative real-time PCR, and mechanisms of non-vesicular glutamate release were studied by pharmacological blocking experiments. The impact of CD8+ T cell-mediated glutamate liberation on neuronal viability was studied in acute brain slice preparations. Results: Following T cell receptor stimulation, CD8+ T cells acquire the molecular repertoire for vesicular glutamate release: (i) they upregulate expression of glutaminase required to generate glutamate via deamination of glutamine and (ii) they upregulate expression of vesicular proton-ATPase and vesicular glutamate transporters required for filling of vesicles with glutamate. Subsequently, CD8+ T cells release glutamate in a strictly stimulus-dependent manner. Upon repetitive T cell receptor stimulation, CD25high CD8+ T effector cells exhibit higher estimated single cell glutamate release rates than CD25low CD8+ T memory cells. Moreover, glutamate liberation by oligodendrocyte-reactive CD25high CD8+ T effector cells is capable of eliciting collateral excitotoxic cell death of neurons (despite glutamate re-uptake by glia cells and neurons) in intact CNS gray matter. Conclusion: Glutamate release may represent a crucial effector pathway of neural-antigen reactive CD8+ T cells, contributing to excitotoxicity in CNS inflammation.<br

    Rabies virus has more than one trick up its sleeve to manipulate the host defences

    Get PDF

    Impaired Autonomic Responses to Emotional Stimuli in Autoimmune Limbic Encephalitis

    Get PDF
    Limbic encephalitis (LE) is an autoimmune-mediated disorder that affects structures of the limbic system, in particular the amygdala. The amygdala constitutes a brain area substantial for processing of emotional, especially fear-related signals. The amygdala is also involved in neuroendocrine and autonomic functions, including skin conductance responses (SCRs) to emotionally arousing stimuli. This study investigates behavioral and autonomic responses to discrete emotion-evoking and neutral film clips in a patient suffering from LE associated with contactin-associated protein-2 (CASPR2)-antibodies as compared to a healthy control group. Results show a lack of SCRs in the patient while watching the film clips, with significant differences compared to healthy controls in the case of fear-inducing videos. There was no comparable impairment in behavioral data (emotion report, valence and arousal ratings). The results point to a defective modulation of sympathetic responses during emotional stimulation in patients with LE, probably due to impaired functioning of the amygdala

    Pharmacological Approaches to Delaying Disability Progression in Patients with Multiple Sclerosis

    Get PDF
    In individuals with multiple sclerosis, physical and cognitive disability progression are clinical and pathophysiological hallmarks of the disease. Despite shortcomings, particularly in capturing cognitive deficits, the Expanded Disability Status Scale is the assessment of disability progression most widely used in clinical trials. Here, we review treatment effects on disability that have been reported in large clinical trials of disease-modifying treatment, both among patients with relapsing–remitting disease and among those with progressive disease. However, direct comparisons are confounded to some degree by the lack of consistency in assessment of disability progression across trials. Confirmed disability progression (CDP) is a more robust measure when performed over a 6-month than a 3-month interval, and reduction in the risk of 6-month CDP in phase III trials provides good evidence for the beneficial effects on disability of several high-efficacy treatments for relapsing–remitting disease. It is also becoming increasingly clear that therapies effective in relapsing–remitting disease have little impact on the course of progressive disease. Given that the pathophysiological mechanisms, which lead to the long-term accrual of physical and cognitive deficits, are evident at the earliest stages of disease, it remains a matter of debate whether the most effective therapies are administered early enough to afford patients the best long-term outcomes

    Blood biomarker dynamics in people with relapsing multiple sclerosis treated with cladribine tablets: results of the 2-year MAGNIFY-MS study

    Get PDF
    Biomarkers; Cladribine tablets; Multiple sclerosisBiomarcadores; Comprimidos de cladribina; Esclerosis múltipleBiomarcadors; Comprimits de cladribina; Esclerosi múltipleBackground and objectives: Cladribine tablets (CladT) represent an effective immune reconstitution therapy, administered in short treatment courses over two consecutive years. To better understand the amplitude of immune changes, we performed a comprehensive analysis during the 2-year study period for the entire MAGNIFY-MS population (N=270). In addition to lymphocyte kinetics, we studied intracellular cytokines serum proteins, and their associations with clinical outcomes. To put these changes into perspective, we analyzed transcriptional changes in T and B cells and associated biological pathways before and after each treatment course with CladT. Methods: Immunophenotyping and transcriptomics were performed at regular visits with major differences reported between baseline (BL) and after each yearly treatment course. Assessments included: lymphocyte dynamics, RNA sequencing (B and T cells), intracellular cytokines, serum proteins (immunoglobulins [IgG and IgM], and serum neurofilament light chain [sNfL]). Clinical measures included: MRI activity, annualized relapse rate (ARR), 6-month confirmed disability progression (6mCDP), timed 25-foot walk (T25FW), and 9-hole peg test (9HPT). Results: All B, T and NK cells were reduced at month (M)3 after CladT administration, except regulatory B cells which increased above BL from M3 to M24. Naïve and transitional B cells recovered at M6; all other B and T cell subsets remained below BL levels. Reductions in all NK cell subtypes were observed at M3, CD16lowCD56bright and NKp46 cells reconstituted at M6 and M12 respectively. Changes in genes and pathways associated with innate and adaptive immune response were observed after CladT treatment, along with reductions in pro-inflammatory cytokine-producing B and T cells and increases in anti-inflammatory cytokine-producing T cells. IgG and IgM levels remained above the lower limits of normal in most participants. sNfL levels decreased, remaining reduced by M24. Significant reductions in the annualized combined unique active lesion count occurred from M2 onwards. ARR was 0.11 (95% confidence interval: 0.09,0.15), with 83% participants free of qualifying relapses. Over 90% of participants were free of 6mCDP, around 87% had no confirmed progression on T25FW and 9HPT. No significant correlations were seen between clinical parameters and lymphocyte dynamics to M6. The safety profile was consistent with previous reports. Discussion: Deep longitudinal immunophenotyping, analysis of transcriptional changes, reduction in cells expressing pro-inflammatory cytokines, along with the marker of neuroaxonal damage provide novel and innovative evidence of CladT rebalancing the immune system towards a more homeostatic and less pathogenic state. Clinical Trial Registration: https://clinicaltrials.gov/study/, identifier NCT03364036.The author(s) declare financial support was received for the research, authorship, and/or publication of this article. The study was sponsored by Merck (CrossRef Funder ID: 10.13039/100009945)

    Specific Patterns of Immune Cell Dynamics May Explain the Early Onset and Prolonged Efficacy of Cladribine Tablets: A MAGNIFY-MS Substudy

    Get PDF
    Cladribina; Cèl·lules immunitàriesCladribina; Células inmunitariasCladribine; Immune cellsBackground and Objectives Cladribine tablets cause a reduction in lymphocytes with a predominant effect on B-cell and T-cell counts. The MAGNIFY-MS substudy reports the dynamic changes on multiple peripheral blood mononuclear cell (PBMC) subtypes and immunoglobulin (Ig) levels over 12 months after the first course of cladribine tablets in patients with highly active relapsing multiple sclerosis (MS). Methods Immunophenotyping was performed at baseline (predose) and at the end of months 1, 2, 3, 6, and 12 after initiating treatment with cladribine tablets. Assessments included lymphocyte subtype counts of CD19+ B cells, CD4+ and CD8+ T cells, CD16+ natural killer cells, plasmablasts, and Igs. Immune cell subtypes were analyzed by flow cytometry, and serum IgG and IgM were analyzed by nephelometric assay. Absolute cell counts and percentage change from baseline were assessed. Results The full analysis set included 57 patients. Rapid reductions in median CD19+, CD20+, memory, activated, and naive B-cell counts were detected, reaching nadir by month 2. Thereafter, total CD19+, CD20+, and naive B-cell counts subsequently reconstituted, but memory B cells remained reduced by 93%–87% for the remainder of the study. The decrease in plasmablasts was slower, reaching nadir at month 3. Decrease in T-cell subtypes was also slower and more moderate compared with B-cell subtypes, reaching nadir between months 3 and 6. IgG and IgM levels remained within the normal range over the 12-month study period. Discussion Cladribine tablets induce a specific pattern of early and sustained PBMC subtype dynamics in the absence of relevant Ig changes: While total B cells were reduced dramatically, T cells were affected significantly less. Naive B cells recovered toward baseline, naive CD4 and CD8 T cells did not, and memory B cells remained reduced. The results help to explain the unique immune depletion and repopulation architecture regarding onset of action and durability of effects of cladribine tablets while largely maintaining immune competence.This work was supported by the healthcare business of Merck KGaA, Darmstadt, Germany (CrossRef Funder ID: 10.13039/100009945)
    corecore