174 research outputs found

    Cure of murine leishmaniasis with anti-interleukin 4 monoclonal antibody. Evidence for a T cell-dependent, interferon gamma-independent mechanism.

    Get PDF
    BALB/c mice infected with Leishmania major develop fatal, progressive disease, despite an immune response characterized by expansion of CD4+ T cells in the draining lymph nodes. The immune response has been further characterized by a lack of IFN-gamma mRNA, but increased IL-4 mRNA in lymphoid tissues, and striking elevation of serum IgE. Treatment of infected BALB/c mice with rIFN-gamma at doses shown to be beneficial in other protozoan infections was insufficient to ameliorate L. major infection. In contrast, neutralization of IL-4 by six weekly injections of mAb 11B11 led to attenuation of disease in 100% of animals, and complete cure in 85%. Resolution of disease required the presence of T cells, and recovered mice remained resistant to reinfection at 12 wk. This immunity was adoptively transferable and was dependent on both CD4+ and CD8+ cells. Although administration of anti-IL-4 was associated with fourfold increase in IFN-gamma mRNA in lymph node cells draining the lesion, the coadministration of neutralizing R4 6A2 anti-IFN-gamma mAb had no effect on resistance to disease. This was in marked contrast to resolution of disease in both resistant C57BL/6- and GK1.5-pretreated BALB/c mice that was abrogated by in vivo treatment with anti-IFN-gamma. These data suggest a novel mechanism of cellular immunity established by interference with the development of Th2 cells during infection

    Reciprocal expression of interferon gamma or interleukin 4 during the resolution or progression of murine leishmaniasis. Evidence for expansion of distinct helper T cell subsets.

    Get PDF
    We purified poly(A)+ mRNA from the spleen and lymph nodes at designated times after infection with Leishmania major in genetically susceptible BALB/c and resistant C57BL/6 mice. The steady-state levels of IL-2, IFN-gamma, IL-4, and IL-1 beta mRNA were determined using Northern hybridizations. IL-2 mRNA levels in the infected organs of BALB/c and C57BL/6 mice were comparable after infection, but IFN-gamma and IL-4 mRNA levels were reciprocally expressed. Levels of IFN-gamma mRNA in C57BL/6 draining nodes and spleen were significantly greater than in BALB/c mice except at 4 and 6 wk of infection, when splenic IFN-gamma mRNA levels were transiently comparable. In contrast, IL-4 mRNA was apparent only in BALB/c and not in C57BL/6 nodes and spleen. Tissue levels of IL-1 beta mRNA were 10-20-fold greater in BALB/c mice. BALB/c mice were pretreated with GK1.5 mAb, a manipulation that promotes healing of subsequent infection by transiently depleting L3T4+ cells. At 8 wk of infection, by which time lymphoid organs were repopulated with L3T4+ cells, GK1.5-pretreated BALB/c mice produced IFN-gamma, but not IL-4 message. Serum levels of IgE were markedly elevated in infected BALB/c, but not in infected C57BL/6 or GK1.5-pretreated BALB/c mice, consistent with in vivo biologic activity of IL-4 in nonhealing mice. Treatment of infected BALB/c mice with neutralizing anti-IL-4 antibody abolished the elevation of serum IgE and significantly attenuated the progression of disease as assessed by size and ulceration of the lesion, and by reduction in the number of tissue parasites. Both protective and deleterious responses to Leishmania infection have previously been shown to be L3T4+ cell dependent. Our findings are consistent with the differential expansion of protective, IFN-gamma-producing Th1 cells in healing mice, and the expansion of deleterious, IL-4-producing Th2 cells in nonhealing mice. The inverse relationship of IFN-gamma and IL-4 gene expression during leishmaniasis may underlie the divergence of cellular and humoral immunity that occurs during chronic infection with Leishmania and possibly other intracellular parasites

    Early rheumatoid arthritis is characterized by a distinct and transient synovial fluid cytokine profile of T cell and stromal cell origin

    Get PDF
    Pathological processes involved in the initiation of rheumatoid synovitis remain unclear. We undertook the present study to identify immune and stromal processes that are present soon after the clinical onset of rheumatoid arthritis ( RA) by assessing a panel of T cell, macrophage, and stromal cell related cytokines and chemokines in the synovial fluid of patients with early synovitis. Synovial fluid was aspirated from inflamed joints of patients with inflammatory arthritis of duration 3 months or less, whose outcomes were subsequently determined by follow up. For comparison, synovial fluid was aspirated from patients with acute crystal arthritis, established RA and osteoarthritis. Rheumatoid factor activity was blocked in the synovial fluid samples, and a panel of 23 cytokines and chemokines measured using a multiplex based system. Patients with early inflammatory arthritis who subsequently developed RA had a distinct but transient synovial fluid cytokine profile. The levels of a range of T cell, macrophage and stromal cell related cytokines ( e. g. IL-2, IL-4, IL-13, IL-17, IL-15, basic fibroblast growth factor and epidermal growth factor) were significantly elevated in these patients within 3 months after symptom onset, as compared with early arthritis patients who did not develop RA. In addition, this profile was no longer present in established RA. In contrast, patients with non-rheumatoid persistent synovitis exhibited elevated levels of interferon-gamma at initiation. Early synovitis destined to develop into RA is thus characterized by a distinct and transient synovial fluid cytokine profile. The cytokines present in the early rheumatoid lesion suggest that this response is likely to influence the microenvironment required for persistent RA

    Balance of IL-10 and Interferon-γ plasma levels in human visceral leishmaniasis: Implications in the pathogenesis

    Get PDF
    BACKGROUND: Leishmaniasis remains a serious public health problem in several parts of the developing world. Effective prophylactic measurements are hampered by imprecise comprehension of different aspects of the disease, including its immunoregulation. A better comprehension of immunoregulation in human VL may be useful both for designing and evaluating immunoprophylaxis. METHODS: To explore immunoregulatory mechanisms, 20 visceral leishmaniasis (VL) patients were evaluated during active disease and at different periods up to one year after treatment determining their plasma cytokine levels, clinical parameters (palpable spleen and liver) and antibody levels. RESULTS: Elevated plasma levels of IFN-γ and of IL-12 p40 were observed during active disease, significantly decreasing after treatment whereas in vitro Leishmania antigen-stimulated IFN-γ production by PBMC exhibited an inverse pattern being low during disease and increasing steadily thereafter. Absence of IFN-γ activity is a hallmark of VL. The main candidate for blunting IFN-γ activity is IL-10, a cytokine highly elevated in plasma with sharp decrease after treatment. Activity of IL-10 is inferred by high levels of anti-Leishmania specific IgG1 and IgG3. TGF-β had elevated total, but not of active, levels lessening the likelihood of being the IFN-γ counterpart. Spleen or liver size presented a steady decrease but return to normal values at only 120 days after treatment. Anti-Leishmania IgG (total and subclasses) levels and DTH or Leishmania-stimulated lymphocyte proliferation conversion to positive also present a slow decrease after treatment. IL-6 plasma levels were elevated in only a few patients. CONCLUSION: Taken together our results suggest that IFN-γ and IL-10 are the molecules most likely involved in determining fate of disease. After treatment, there is a long delay before the immune profile returns to normal what precludes using plasma cytokine levels as criteria of cure as simpler clinical evaluations, as a palpable spleen or liver, can be used

    Differential effects of antigens from L. braziliensis isolates from disseminated and cutaneous leishmaniasis on in vitro cytokine production

    Get PDF
    BACKGROUND: Disseminated leishmaniasis is an emerging infectious disease, mostly due to L. braziliensis, which has clinical and histopathological features distinct from cutaneous leishmaniasis. METHODS: In the current study we evaluated the in vitro production of the cytokines IFN-γ, TNF-α, IL-5 and IL-10 by peripheral blood mononuclear cells (PBMC) from 15 disseminated leishmaniasis and 24 cutaneous leishmaniasis patients upon stimulation with L. braziliensis antigens genotyped as disseminated leishmaniasis or cutaneous leishmaniasis isolates. RESULTS: Regardless of the source of L. braziliensis antigens, PBMC from cutaneous leishmaniasis patients produced significantly higher IFN-γ than PBMC from disseminated leishmaniasis patients. Levels of TNF-α by PBMC from cutaneous leishmaniasis patients were significantly higher than disseminated leishmaniasis patients only when stimulated by genotyped cutaneous leishmaniasis antigens. The levels of IL-5 and IL-10 production by PBMC were very low and similar in PBMCs from both disseminated leishmaniasis and cutaneous leishmaniasis patients. The immune response of each patient evaluated by the two L. braziliensis antigens was assessed in a paired analysis in which we showed that L. braziliensis genotyped as disseminated leishmaniasis isolate was more potent than L. braziliensis genotyped as cutaneous leishmaniasis isolate in triggering IFN-γ and TNF-α production in both diseases and IL-5 only in cutaneous leishmaniasis patients. CONCLUSION: This study provides evidence that antigens prepared from genotypically distinct strains of L. braziliensis induce different degrees of immune response. It also indicates that both parasite and host play a role in the outcome of L. braziliensis infection

    Cell populations in lesions of cutaneous leishmaniasis of leishmania (L.) amazonensis- infected rhesus macaques, Macaca mulatta

    Full text link
    The cellular nature of the infiltrate in cutaneous lesion of rhesus monkeys experimentally infected with Leishmania (L.) amazonensis was characterized by immunohistochemistry. Skin biopsies from infected animals with active or healing lesions were compared to non-infected controls (three of each type) to quantitate inflammatory cell types. Inflammatory cells (composed of a mixture of T lymphocyte subpopulations, macrophages and a small number of natural killer cells and granulocytes) were more numerous in active lesions than in healing ones. T-cells accounted for 44.7 ± 13.1% of the infiltrate in active lesions (versus CD2+= 40.3 ± 5.7% in healing lesions) and T-cell ratios favor CD8+ cells in both lesion types. The percentage of cells expressing class II antigen (HLA-DR+) in active lesions (95 ± 7.1%) was significantly higher (P < 0.005) from the healing lesions (42.7 ± 12.7%). Moreover, the expression of the activation molecules CD25 (@ 16%), the receptor for interleukin-2, suggests that many T cells are primed and proliferating in active lesions. Distinct histopathological patterns were observed in lesions at biopsy, but healing lesions contained more organized epithelioid granulomas and activated macrophages, followed by fibrotic substitution. The progression and resolution of skin lesions appears to be very similar to that observed in humans, confirming the potential for this to be used as a viable model to study the immune response in human cutaneous leishmaniasis

    Keratinocytes Determine Th1 Immunity during Early Experimental Leishmaniasis

    Get PDF
    Experimental leishmaniasis is an excellent model system for analyzing Th1/Th2 differentiation. Resistance to Leishmania (L.) major depends on the development of a L. major specific Th1 response, while Th2 differentiation results in susceptibility. There is growing evidence that the microenvironment of the early affected tissue delivers the initial triggers for Th-cell differentiation. To analyze this we studied differential gene expression in infected skin of resistant and susceptible mice 16h after parasite inoculation. Employing microarray technology, bioinformatics, laser-microdissection and in-situ-hybridization we found that the epidermis was the major source of immunomodulatory mediators. This epidermal gene induction was significantly stronger in resistant mice especially for several genes known to promote Th1 differentiation (IL-12, IL-1β, osteopontin, IL-4) and for IL-6. Expression of these cytokines was temporally restricted to the crucial time of Th1/2 differentiation. Moreover, we revealed a stronger epidermal up-regulation of IL-6 in the epidermis of resistant mice. Accordingly, early local neutralization of IL-4 in resistant mice resulted in a Th2 switch and mice with a selective IL-6 deficiency in non-hematopoietic cells showed a Th2 switch and dramatic deterioration of disease. Thus, our data indicate for the first time that epidermal cytokine expression is a decisive factor in the generation of protective Th1 immunity and contributes to the outcome of infection with this important human pathogen

    Dendritic cell-mediated vaccination relies on interleukin-4 receptor signaling to avoid tissue damage after Leishmania major infection of BALB/c mice

    Get PDF
    Prevention of tissue damages at the site of Leishmania major inoculation can be achieved if the BALB/c mice are systemically given L. major antigen (LmAg)-loaded bone marrow-derived dendritic cells (DC) that had been exposed to CpG-containing oligodeoxynucleotides (CpG ODN). As previous studies allowed establishing that interleukin-4 (IL-4) is involved in the redirection of the immune response towards a type 1 profile, we were interested in further exploring the role of IL-4. Thus, wild-type (wt) BALB/c mice or DC-specific IL-4 receptor alpha (IL-4Rα)-deficient (CD11ccreIL-4Rα−/lox) BALB/c mice were given either wt or IL-4Rα-deficient LmAg-loaded bone marrow-derived DC exposed or not to CpG ODN prior to inoculation of 2×105 stationary-phase L. major promastigotes into the BALB/c footpad. The results provide evidence that IL4/IL-4Rα-mediated signaling in the vaccinating DC is required to prevent tissue damage at the site of L. major inoculation, as properly conditioned wt DC but not IL-4Rα-deficient DC were able to confer resistance. Furthermore, uncontrolled L. major population size expansion was observed in the footpad and the footpad draining lymph nodes of CD11ccreIL-4Rα−/lox mice immunized with CpG ODN-exposed LmAg-loaded IL-4Rα-deficient DC, indicating the influence of IL-4Rα-mediated signaling in host DC to control parasite replication. In addition, no footpad damage occurred in BALB/c mice that were systemically immunized with LmAg-loaded wt DC doubly exposed to CpG ODN and recombinant IL-4. We discuss these findings and suggest that the IL4/IL4Rα signaling pathway could be a key pathway to trigger when designing vaccines aimed to prevent damaging processes in tissues hosting intracellular microorganisms

    IL-12p35 induces expansion of IL-10 and IL-35-expressing regulatory B cells and ameliorates autoimmune disease

    Get PDF
    We thank Dr. Haohua Qian and Yichao Li (Visual function core, NEI, NIH) for technical assistance with OCT; Phyllis Silver (NEI, NIH) for EAU scoring of the eyes; Rashid Mahdi. M.J.M. for technical assistance with western blot analyses and Rafael Villasmil (NEI FLOW Cytometry Core facility) for assistance with FACS analysis.Peer reviewedPublisher PD
    corecore