7,752 research outputs found

    Non-minimal derivative couplings of the composite metric

    Full text link
    In the context of massive gravity, bi-gravity and multi-gravity non-minimal matter couplings via a specific composite effective metric were investigated recently. Even if these couplings generically reintroduce the Boulware-Deser ghost, this composite metric is unique in the sense that the ghost reemerges only beyond the decoupling limit and the matter quantum loop corrections do not detune the potential interactions. We consider non-minimal {\it derivative} couplings of the composite metric to matter fields for a specific subclass of Horndeski scalar-tensor interactions. We first explore these couplings in the mini-superspace and investigate in which scenario the ghost remains absent. We further study these non-minimal derivative couplings in the decoupling-limit of the theory and show that the equation of motion for the helicity-0 mode remains second order in derivatives. Finally, we discuss preliminary implications for cosmology.Comment: 17 page

    A String Approximation for Cooper Pair in High-Tc_{\bf c} superconductivity

    Full text link
    It is assumed that in some sense the High-Tc_c superconductivity is similar to the quantum chromodynamics (QCD). This means that the phonons in High-Tc_c superconductor have the strong interaction between themselves like to gluons in the QCD. At the experimental level this means that in High-Tc_c superconductor exists the nonlinear sound waves. It is possible that the existence of the strong phonon-phonon interaction leads to the confinement of phonons into a phonon tube (PT) stretched between two Cooper electrons like a hypothesized flux tube between quark and antiquark in the QCD. The flux tube in the QCD brings to a very strong interaction between quark-antiquark, the similar situation can be in the High-Tc_c superconductor: the presence of the PT can essentially increase the binding energy for the Cooper pair. In the first rough approximation the PT can be approximated as a nonrelativistic string with Cooper electrons at the ends. The BCS theory with such potential term is considered. It is shown that Green's function method in the superconductivity theory is a realization of discussed Heisenberg idea proposed by him for the quantization of nonlinear spinor field. A possible experimental testing for the string approximation of the Cooper pair is offered.Comment: Essential changes: (a) the section is added in which it is shown that Green's function method in the superconductivity theory is a realization of discussed Heisenberg quantization method; (b) Veneziano amplitude is discussed as an approximation for the 4-point Green's function in High-T_c; (c) it is shown that Eq.(53) has more natural solution on the layer rather than on 3 dimensional spac

    Dark Matter via Massive (bi-)Gravity

    Full text link
    In this work we investigate the existence of relativistic models for dark matter in the context of bimetric gravity, used here to reproduce the modified Newtonian dynamics (MOND) at galactic scales. For this purpose we consider two different species of dark matter particles that separately couple to the two metrics of bigravity. These two sectors are linked together \textit{via} an internal U(1)U(1) vector field, and some effective composite metric built out of the two metrics. Among possible models only certain classes of kinetic and interaction terms are allowed without invoking ghost degrees of freedom. Along these lines we explore the number of allowed kinetic terms in the theory and point out the presence of ghosts in a previous model. Finally, we propose a promising class of ghost-free candidate theories that could provide the MOND phenomenology at galactic scales while reproducing the standard cold dark matter (CDM) model at cosmological scales.Comment: 7 pages, references added, typos corrected, journal versio

    Neurofly 2008 abstracts : the 12th European Drosophila neurobiology conference 6-10 September 2008 Wuerzburg, Germany

    Get PDF
    This volume consists of a collection of conference abstracts

    A theory of ferromagnetism by Ettore Majorana

    Full text link
    We present and analyze in detail an unknown theory of ferromagnetism developed by Ettore Majorana as early as the beginnings of 1930s, substantially different in the methods employed from the well-known Heisenberg theory of 1928 (and from later formulations by Bloch and others). Similarly to this, however, it describes successfully the main features of ferromagnetism, although the key equation for the spontaneous mean magnetization and the expression for the Curie temperature are different from those deduced in the Heisenberg theory (and in the original phenomenological Weiss theory). The theory presented here contains also a peculiar prediction for the number of nearest neighbors required to realize ferromagnetism, which avoids the corresponding arbitrary assumption made by Heisenberg on the basis of known (at that time) experimental observations. Some applications of the theory (linear chain, triangular chain, etc.) are, as well, considered.Comment: Latex, amsart, 16 pages, 4 figure
    corecore