2,688 research outputs found
Hyperostotic tympanic bone spicules in domestic and wild animal species
Hyperostotic tympanic bone spicules (HTBS), or "mucoperiosteal exostoses" (ME, syn.) are small, globular (>= 1 mm in diameter), mostly stalked and drumstick-like, bony structures, which arise from the inner wall of the tympanic bulla and project into the middle ear cavity. HTBS present as mineral densities inside the tympanic bulla on radiographs or computed tomographic (CT) images. They have previously been referred to as "otoliths" and were thought to represent mineral concretions secondary to otitis media. Recently, it was shown that HTBS actually consist of regularly composed bone tissue, covered by normal middle ear mucosa. So far, HTBS have only extensively been described in dogs, where they occur with a prevalence of up to >45%. A recent study detected ME, most likely representing HTBS, in the tympanic cavities of skeletonised skull bones of African lions. To estimate the occurrence of HTBS in other mammal species, the middle ears of adult animals of 78 different domestic, wild, and zoo species undergoing routine necropsy at the Institute of Veterinary Pathology of the LMU Munich, Germany were examined in the present study. HTBS were found in the tympanic bullae of carnivorous species, such as canids (wolf, fox), and in several large felid species (lion, tiger, leopard, cheetah). In contrast, HTBS were not present in domestic cats (more than to 200 cases), small carnivorous species such as mustelids, nor in any primate, ungulate, ruminant, pig, insectivore, or rodent species. The detectability of HTBS by CT of the tympanic bullae of large felids was demonstrated in an African lion. Histologically, HTBS consisted of mature lamellar bone, covered by periosteum and a partially ciliated, flat epithelium, regularly without any apparent inflammatory alterations. The present study demonstrates that HTBS may frequently occur in large felids and in different canid species. These findings should be taken into account when examining the middle ear, or interpreting bulla radiographs/CT-images of the respective species. However, the factors triggering the development of HTBS remain to be identified
Microstrip superconducting quantum interference device amplifiers with submicron Josephson junctions: enhanced gain at gigahertz frequencies
We present measurements of an amplifier based on a dc superconducting quantum
interference device (SQUID) with submicron Al-AlOx-Al Josephson junctions. The
small junction size reduces their self-capacitance and allows for the use of
relatively large resistive shunts while maintaining nonhysteretic operation.
This leads to an enhancement of the SQUID transfer function compared to SQUIDs
with micron-scale junctions. The device layout is modified from that of a
conventional SQUID to allow for coupling signals into the amplifier with a
substantial mutual inductance for a relatively short microstrip coil.
Measurements at 310 mK exhibit gain of 32 dB at 1.55 GHz.Comment: Version with high resolution figures at:
http://physics.syr.edu/~bplourde/bltp-publications.ht
Picovoltmeter for probing vortex dynamics in a single weak-pinning Corbino channel
We have developed a picovoltmeter using a Nb dc Superconducting QUantum
Interference Device (SQUID) for measuring the flux-flow voltage from a small
number of vortices moving through a submicron weak-pinning superconducting
channel. We have applied this picovoltmeter to measure the vortex response in a
single channel arranged in a circle on a Corbino disk geometry. The circular
channel allows the vortices to follow closed orbits without encountering any
sample edges, thus eliminating the influence of entry barriers.Comment: 4 pages, 3 figures, submitted to Review of Scientific Instrument
Goldstone bosons and a dynamical Higgs field
Higgs inflation uses the gauge variant Higgs field as the inflaton. During
inflation the Higgs field is displaced from its minimum, which results in
associated Goldstone bosons that are apparently massive. Working in a minimally
coupled U(1) toy model, we use the closed-time-path formalism to show that
these Goldstone bosons do contribute to the one-loop effective action.
Therefore the computation in unitary gauge gives incorrect results. Our
expression for the effective action is gauge invariant upon using the
background equations of motion.Comment: 27 pages, 2 figures, published version with minor correction
Crystal growth and magnetic structure of MnBi2Te4
Millimeter-sized MnBiTe single crystals are grown out of Bi-Te flux
and characterized by measuring magnetic and transport properties, scanning
tunneling microscope (STM) and spectroscopy (STS). The magnetic structure of
MnBiTe below T is determined by powder and single crystal neutron
diffraction measurements. Below T=24\,K, Mn moments order
ferromagnetically in the \textit{ab} plane but antiferromagnetically along the
crystallographic \textit{c} axis. The ordered moment is 4.04(13) /Mn
at 10\,K and aligned along the crystallographic \textit{c}-axis. The electrical
resistivity drops upon cooling across T or when going across the
metamagnetic transition in increasing fields below T. A critical scattering
effect was observed in the vicinity of T in the temperature dependence of
thermal conductivity. However, A linear temperature dependence was observed for
thermopower in the temperature range 2K-300K without any anomaly around T.
These indicate that the magnetic order in Mn-Te layer has negligible effect on
the electronic band structure, which makes possible the realization of proposed
topological properties in MnBiTe after fine tuning of the electronic
band structure
Robustness of Cosmological Simulations I: Large Scale Structure
The gravitationally-driven evolution of cold dark matter dominates the
formation of structure in the Universe over a wide range of length scales.
While the longest scales can be treated by perturbation theory, a fully
quantitative understanding of nonlinear effects requires the application of
large-scale particle simulation methods. Additionally, precision predictions
for next-generation observations, such as weak gravitational lensing, can only
be obtained from numerical simulations. In this paper, we compare results from
several N-body codes using test problems and a diverse set of diagnostics,
focusing on a medium resolution regime appropriate for studying many
observationally relevant aspects of structure formation. Our conclusions are
that -- despite the use of different algorithms and error-control methodologies
-- overall, the codes yield consistent results. The agreement over a wide range
of scales for the cosmological tests is test-dependent. In the best cases, it
is at the 5% level or better, however, for other cases it can be significantly
larger than 10%. These include the halo mass function at low masses and the
mass power spectrum at small scales. While there exist explanations for most of
the discrepancies, our results point to the need for significant improvement in
N-body errors and their understanding to match the precision of near-future
observations. The simulation results, including halo catalogs, and initial
conditions used, are publicly available.Comment: 32 pages, 53 figures, data from the simulations is available at
http://t8web.lanl.gov/people/heitmann/arxiv, accepted for publication in
ApJS, several minor revisions, reference added, main conclusions unchange
PkANN - I. Non-linear matter power spectrum interpolation through artificial neural networks
We investigate the interpolation of power spectra of matter fluctuations
using Artificial Neural Network (PkANN). We present a new approach to confront
small-scale non-linearities in the power spectrum of matter fluctuations. This
ever-present and pernicious uncertainty is often the Achilles' heel in
cosmological studies and must be reduced if we are to see the advent of
precision cosmology in the late-time Universe. We show that an optimally
trained artificial neural network (ANN), when presented with a set of
cosmological parameters (Omega_m h^2, Omega_b h^2, n_s, w_0, sigma_8, m_nu and
redshift z), can provide a worst-case error <=1 per cent (for z<=2) fit to the
non-linear matter power spectrum deduced through N-body simulations, for modes
up to k<=0.7 h/Mpc. Our power spectrum interpolator is accurate over the entire
parameter space. This is a significant improvement over some of the current
matter power spectrum calculators. In this paper, we detail how an accurate
interpolation of the matter power spectrum is achievable with only a sparsely
sampled grid of cosmological parameters. Unlike large-scale N-body simulations
which are computationally expensive and/or infeasible, a well-trained ANN can
be an extremely quick and reliable tool in interpreting cosmological
observations and parameter estimation. This paper is the first in a series. In
this method paper, we generate the non-linear matter power spectra using
HaloFit and use them as mock observations to train the ANN. This work sets the
foundation for Paper II, where a suite of N-body simulations will be used to
compute the non-linear matter power spectra at sub-per cent accuracy, in the
quasi-non-linear regime 0.1 h/Mpc <= k <= 0.9 h/Mpc. A trained ANN based on
this N-body suite will be released for the scientific community.Comment: 12 pages, 9 figures, 2 tables, updated to match version accepted by
MNRA
The Halo Mass Function: High-Redshift Evolution and Universality
We study the formation of dark matter halos in the concordance LCDM model
over a wide range of redshifts, from z=20 to the present. Our primary focus is
the halo mass function, a key probe of cosmology. By performing a large suite
of nested-box N-body simulations with careful convergence and error controls
(60 simulations with box sizes from 4 to 256 Mpc/h, we determine the mass
function and its evolution with excellent statistical and systematic errors,
reaching a few percent over most of the considered redshift and mass range.
Across the studied redshifts, the halo mass is probed over 6 orders of
magnitude (10^7 - 10^13.5 M_sun/h). Historically, there has been considerable
variation in the high redshift mass function as obtained by different groups.
We have made a concerted effort to identify and correct possible systematic
errors in computing the mass function at high redshift and to explain the
discrepancies between some of the previous results. We discuss convergence
criteria for the required force resolution, simulation box size, halo mass
range, initial and final redshift, and time stepping. Because of conservative
cuts on the mass range probed by individual boxes, our results are relatively
insensitive to simulation volume, the remaining sensitivity being consistent
with extended Press-Schechter theory. Previously obtained mass function fits
near z=0, when scaled by linear theory, are in good agreement with our results
at all redshifts, although a mild redshift dependence consistent with that
found by Reed and collaborators exists at low redshifts.Comment: 20 pages, 15 figures. Minor changes to the text and figures; results
and conclusions unchange
Cyclotron resonance in a two-dimensional electron gas with long-range randomness
We show that the the cyclotron resonance in a two-dimensional electron gas
has non-trivial properties if the correlation length of the disorder is larger
than the de Broglie wavelength: (a) the lineshape assumes three different forms
in strong, intermediate, and weak magnetic fields (b) at the transition from
the intermediate to the weak fields the linewidth suddenly collapses due to an
explosive growth in the fraction of electrons with a diffusive-type dynamics.Comment: A few typos correcte
- …
