2,875 research outputs found

    Non-collinear interaction of photons with orbital angular momentum

    Get PDF
    We elucidate the consequences of a phase-matching theory that describes second-harmonic generation of two non-collinear incident light beams that carry orbital angular momentum (OAM). More specifically, the two incident beams generate a third that, depending on the incident OAM, may experience a significantly smaller conversion efficiency in comparison to that based on the conventional phase-matching theory. This is the case even for incident angles substantially less than those required for non-conservation of OAM in the nonlinear interaction. Experiments are performed under different conditions and are in excellent agreement with the theory. Our results have implications beyond the specific case studied here of second-harmonic generation, in particular for parametric down-conversion of photons.Comment: 6 pages, 4 figure

    Coherent control of light interaction with graphene

    Full text link
    We report the experimental observation of all-optical modulation of light in a graphene film. The graphene film is scanned across a standing wave formed by two counter-propagating laser beams in a Sagnac interferometer. Through a coherent absorption process the on-axis transmission is modulated with close to 80% efficiency. Furthermore we observe modulation of the scattered energy by mapping the off-axis scattered optical signal: scattering is minimized at a node of the standing wave pattern and maximized at an antinode. The results highlight the possibility to switch and modulate any given optical interaction with deeply sub-wavelength films.Comment: 4 pages, 4 figure

    Effect of quantum confinement on exciton-phonon interactions

    Get PDF
    We investigate the homogeneous linewidth of localized type-I excitons in type-II GaAs/AlAs superlattices. These localizing centers represent the intermediate case between quasi-two-dimensional (Q2D) and quasi-zero-dimensional localizations. The temperature dependence of the homogeneous linewidth is obtained with high precision from micro-photoluminescence spectra. We confirm the reduced interaction of the excitons with their environment with decreasing dimensionality except for the coupling to LO-phonons. The low-temperature limit for the linewidth of these localized excitons is five times smaller than that of Q2D excitons. The coefficient of exciton-acoustic-phonon interaction is 5 ~ 6 times smaller than that of Q2D excitons. An enhancement of the average exciton-LO-phonon interaction by localization is found in our sample. But this interaction is very sensitive to the detailed structure of the localizing centers.Comment: 6 pages, 4 figure

    Thromboelastometry (ROTEM®) in children: age-related reference ranges and correlations with standard coagulation tests

    Get PDF
    Background The small sample volume needed and the prompt availability of results make viscoelastic methods like rotational thromboelastometry (ROTEM®) attractive for monitoring coagulation in small children. However, data on reference ranges for ROTEM® parameters in children are scarce. Methods Four hundred and seven children (ASA I and II) undergoing elective surgery were recruited for this prospective, two-centre, observational study. Subjects were grouped as follows: 0-3, 4-12, 13-24 months, 2-5, 6-10, and 11-16 yr. Study objectives were to establish age-dependent reference ranges for ROTEM® assays, analyse age dependence of parameters, and compare ROTEM® data with standard coagulation tests. Results Data from 359 subjects remained for final analysis. Except for extrinsically activated clot strength and lysis, parameters for ROTEM® assays were significantly different among all age groups. The most striking finding was that subjects aged 0-3 months exhibited accelerated initiation (ExTEM coagulation time: median 48 s, Q1-Q3 38-65 s; P=0.001) and propagation of coagulation (α angle: median 78o, Q1-Q3 69-84o; P<0.001) and maximum clot firmness (median 62 mm, Q1-Q3 54-74 mm), although standard plasma coagulation test results were prolonged (prothrombin time: median 13.2 s, Q1-Q3 12.6-13.6 s; activated partial thromboplastin time: median 42 s, Q1-Q3 40-46 s). Lysis indices of <85% were observed in nearly one-third of all children without increased bleeding tendency. Platelet count and fibrinogen levels correlated significantly with clot strength, and fibrinogen levels correlated with fibrin polymerization. Conclusions Reference ranges for ROTEM® assays were determined for all paediatric age groups. These values will be helpful when monitoring paediatric patients and in studies of perioperative coagulation in childre

    Multiband theory of multi-exciton complexes in self-assembled quantum dots

    Full text link
    We report on a multiband microscopic theory of many-exciton complexes in self-assembled quantum dots. The single particle states are obtained by three methods: single-band effective-mass approximation, the multiband kpk\cdot p method, and the tight-binding method. The electronic structure calculations are coupled with strain calculations via Bir-Pikus Hamiltonian. The many-body wave functions of NN electrons and NN valence holes are expanded in the basis of Slater determinants. The Coulomb matrix elements are evaluated using statically screened interaction for the three different sets of single particle states and the correlated NN-exciton states are obtained by the configuration interaction method. The theory is applied to the excitonic recombination spectrum in InAs/GaAs self-assembled quantum dots. The results of the single-band effective-mass approximation are successfully compared with those obtained by using the of kpk\cdot p and tight-binding methods.Comment: 10 pages, 8 figure

    Single and vertically coupled type II quantum dots in a perpendicular magnetic field: exciton groundstate properties

    Full text link
    The properties of an exciton in a type II quantum dot are studied under the influence of a perpendicular applied magnetic field. The dot is modelled by a quantum disk with radius RR, thickness dd and the electron is confined in the disk, whereas the hole is located in the barrier. The exciton energy and wavefunctions are calculated using a Hartree-Fock mesh method. We distinguish two different regimes, namely d<<2Rd<<2R (the hole is located at the radial boundary of the disk) and d>>2Rd>>2R (the hole is located above and below the disk), for which angular momentum (l)(l) transitions are predicted with increasing magnetic field. We also considered a system of two vertically coupled dots where now an extra parameter is introduced, namely the interdot distance dzd_{z}. For each lhl_{h} and for a sufficient large magnetic field, the ground state becomes spontaneous symmetry broken in which the electron and the hole move towards one of the dots. This transition is induced by the Coulomb interaction and leads to a magnetic field induced dipole moment. No such symmetry broken ground states are found for a single dot (and for three vertically coupled symmetric quantum disks). For a system of two vertically coupled truncated cones, which is asymmetric from the start, we still find angular momentum transitions. For a symmetric system of three vertically coupled quantum disks, the system resembles for small dzd_{z} the pillar-like regime of a single dot, where the hole tends to stay at the radial boundary, which induces angular momentum transitions with increasing magnetic field. For larger dzd_{z} the hole can sit between the disks and the lh=0l_{h}=0 state remains the groundstate for the whole BB-region.Comment: 11 pages, 16 figure

    Theoretical study of finite temperature spectroscopy in van der Waals clusters. I. Probing phase changes in CaAr_n

    Full text link
    The photoabsorption spectra of calcium-doped argon clusters CaAr_n are investigated at thermal equilibrium using a variety of theoretical and numerical tools. The influence of temperature on the absorption spectra is estimated using the quantum superposition method for a variety of cluster sizes in the range 6<=n<=146. At the harmonic level of approximation, the absorption intensity is calculated through an extension of the Gaussian theory by Wadi and Pollak [J. Chem. Phys. vol 110, 11890 (1999)]. This theory is tested on simple, few-atom systems in both the classical and quantum regimes for which highly accurate Monte Carlo data can be obtained. By incorporating quantum anharmonic corrections to the partition functions and respective weights of the isomers, we show that the superposition method can correctly describe the finite-temperature spectroscopic properties of CaAr_n systems. The use of the absorption spectrum as a possible probe of isomerization or phase changes in the argon cluster is discussed at the light of finite-size effects.Comment: 17 pages, 9 figure

    Exciton and negative trion dissociation by an external electric field in vertically coupled quantum dots

    Full text link
    We study the Stark effect for an exciton confined in a pair of vertically coupled quantum dots. A single-band approximation for the hole and a parabolic lateral confinement potential are adopted which allows for the separation of the lateral center-of-mass motion and consequently for an exact numerical solution of the Schr\"odinger equation. We show that for intermediate tunnel coupling the external electric field leads to the dissociation of the exciton via an avoided crossing of bright and dark exciton energy levels which results in an atypical form of the Stark shift. The electric-field-induced dissociation of the negative trion is studied using the approximation of frozen lateral degrees of freedom. It is shown that in a symmetric system of coupled dots the trion is more stable against dissociation than the exciton. For an asymmetric system of coupled dots the trion dissociation is accompanied by a positive curvature of the recombination energy line as a function of the electric field.Comment: PRB - in prin
    corecore