333 research outputs found

    Constraining the long-term evolution of the slip rate for a major extensional fault system in the central Aegean, Greece, using thermochronology

    Get PDF
    The brittle/ductile transition is a major rheologic boundary in the crust yet little is known about how or if rates of tectonic processes are influenced by this boundary. In this study we examine the slip history of the large-scale Naxos/Paros extensional fault system (NPEFS), Cyclades, Greece, by comparing published slip rates for the ductile crust with new thermochronological constraints on slip rates in the brittle regime. Based on apatite and zircon fission-track (AFT and ZFT) and (U–Th)/He dating we observe variable slip rates across the brittle/ductile transition on Naxos. ZFT and AFT ages range from 11.8 ± 0.8 to 9.7 ± 0.8 Ma and 11.2 ± 1.6 to 8.2 ± 1.2 Ma and (U–Th)/He zircon and apatite ages are between 10.4 ± 0.4 to 9.2 ± 0.3 Ma and 10.7 ± 1.0 to 8.9 ± 0.6 Ma, respectively. On Paros, ZFT and AFT ages range from 13.1 ± 1.4 Ma to 11.1 ± 1.0 Ma and 12.7 ± 2.8 Ma to 10.5 ± 2.0 Ma while the (U–Th)/He zircon ages are slightly younger between 8.3 ± 0.4 Ma and 9.8 ± 0.3 Ma. All ages consistently decrease northwards in the direction of hanging wall transport. Most of our new thermochronological results and associated thermal modeling more strongly support the scenario of an identical fault dip and a constant or slightly accelerating slip rate of 6–8 km Myr− 1 on the NPEFS across the brittle/ductile transition. Even the intrusion of a large granodiorite body into the narrowing fault zone at 12 Ma on Naxos does not seem to have affected the thermal structure of the area in a way that would significantly disturb the slip rate. The data also show that the NPEFS accomplished a minimum total offset of 50 km between 16 and 8 Ma

    Minimizing the weighted number of tardy jobs on a single machine: Strongly correlated instances

    Get PDF
    This paper addresses a single machine scheduling problem minimizing the weighted number of tardy jobs, where each job is characterized by processing time, due date, deadline, and weight. It is known from the existing literature that so-called strongly correlated instances, i.e., instances where each job has the weight equal to its processing time plus a constant, are significantly harder to solve compared to instances without this relation. In this work, we extend an exact algorithm proposed in Baptiste et al. (2010) with the aim of solving the strongly correlated instances significantly faster. The main improvement is the new integer linear programming model for strongly correlated instances utilizing a decomposition according to the number of tardy jobs. Other proposed improvements are tighter lower and upper bounds which can be applied to all types of instances. The best-known algorithm proposed in Baptiste et al. (2010) cannot solve all instances with 250 jobs to the optimum within an hour. On the same hardware, our relatively simple improvements implemented into the algorithm proposed by Baptiste et al. enable solving all examined strongly correlated instances to the optimum within an hour for up to 5,000 jobs and reduce the computational time on other instances as well

    Kinematics of the Southern Rhodope Core Complex (North Greece)

    Get PDF
    The Southern Rhodope Core Complex is a wide metamorphic dome exhumed in the northern Aegean as a result of large-scale extension from mid-Eocene to mid-Miocene times. Its roughly triangular shape is bordered on the SW by the Jurassic and Cretaceous metamorphic units of the Serbo-Macedonian in the Chalkidiki peninsula and on the N by the eclogite bearing gneisses of the Sideroneron massif. The main foliation of metamorphic rocks is flat lying up to 100 km core complex width. Most rocks display a stretching lineation trending NEâ SW. The Kerdylion detachment zone located at the SW controlled the exhumation of the core complex from middle Eocene to mid-Oligocene. From late Oligocene to mid-Miocene exhumation is located inside the dome and is accompanied by the emplacement of the synkinematic plutons of Vrondou and Symvolon. Since late Miocene times, extensional basin sediments are deposited on top of the exhumed metamorphic and plutonic rocks and controlled by steep normal faults and flat-ramp-type structures. Evidence from Thassos Island is used to illustrate the sequence of deformation from stacking by thrusting of the metamorphic pile to ductile extension and finally to development of extensional Plio-Pleistocene sedimentary basin. Paleomagnetic data indicate that the core complex exhumation is controlled by a 30� dextral rotation of the Chalkidiki block. Extensional displacements are restored using a pole of rotation deduced from the curvature of stretching lineation trends at core complex scale. It is argued that the Rhodope Core Complex has recorded at least 120 km of extension in the North Aegean, since the last 40 My

    Arene Variation of Highly Cytotoxic Tridentate Naphthoquinone-Based Ruthenium(II) Complexes and In-Depth In Vitro Studies

    Get PDF
    The main purpose of this study was to synthesize a new set of naphthoquinone-based ruthenium(II) arene complexes and to develop an understanding of their mode of action. This study systematically reviews the steps of synthesis, aiming to provide a simplified approach using microwave irradiation. The chemical structures and the physicochemical properties of this novel group of compounds were examined by 1H-NMR and 13C-NMR spectroscopy, X-ray diffractometry, HPLC-MS and supporting DFT calculations. Several aspects of the biological activity were investigated in vitro, including short- and long-term cytotoxicity tests, cellular accumulation studies, detection of reactive oxygen species generation, apoptosis induction and NAD(P)H:quinone oxidoreductase 1 (NQO1) activity as well as cell cycle analysis in A549, CH1/PA-1, and SW480 cancer cells. Furthermore, the DNA interaction ability was studied in a cell-free assay. A positive correlation was found between cytotoxicity, lipophilicity and cellular accumulation of the tested complexes, and the results offer some important insights into the effects of the arene. The most obvious finding to emerge from this study is that the usually very chemosensitive CH1/PA-1 teratocarcinoma cells showed resistance to these phthiocol-based organometallics in comparison to the usually less chemosensitive SW480 colon carcinoma cells, which pilot experiments suggest as being related to NQO1 activity

    Hybrid Bermudagrass Responses to Impaired Water Sources

    Get PDF
    Low-quality (i.e., impaired) water sources are commonly used to irrigate warm-season turfgrass landscapes as a result of limited supplies of potable water sources. Currently, there is great need to define the impacts of impaired water sources on turfgrass water consumption, growth, and quality. The objectives of this study were to characterize actual evaporation (ETa), clipping production, and quality of three hybrid bermudagrass varieties [‘TifTuf’, ‘Tifway’, and ‘Midiron’; Cynodon dactylon (L.) Pers. × C. traansvalensis Burtt Davy] grown under three water sources [reverse osmosis (RO), local well, and recycled], each supplied at full irrigation levels (1.0 × ETa) over two 8-week study periods. When pooling across water source and date, TifTuf maintained the highest visual quality and normalized difference vegetation index (NDVI) compared with both Midiron and Tifway. This was accompanied by a greater daily ETa rate, clipping production, and water use efficiency (WUE) compared with Midiron in both studies. When pooling across variety and date, daily ETa of turfgrass receiving recycled water was 5% to 10% less than those receiving the local well or RO water. In addition, turfgrasses receiving local well water held the greatest visual quality and NDVI compared with those receiving either RO water in the summer study. Visual quality and NDVI were also less in turfgrasses receiving RO water compared with those receiving local well or recycled water in the fall. Despite turfgrasses having a lower ETa under recycled water in both study periods, these plants had significantly greater clipping production compared with RO water in the summer. Also, clipping production under recycled water did not differ significantly from the other two sources in the fall study. Furthermoe, in both studies, WUE was similar for turfgrasses receiving recycled water compared with those receiving RO or local well water. Results demonstrated that irrigation water quality influences critical factors for hybrid bermudagrass growth and that considerable variability exists among three commercially available varieties for evapotranspiration rates, quality, and clipping production

    Quaternary Ammonium Palmitoyl Glycol Chitosan (GCPQ) Loaded with Platinum-Based Anticancer Agents—A Novel Polymer Formulation for Anticancer Therapy

    Get PDF
    Quaternary ammonium palmitoyl glycol chitosan (GCPQ) has already shown beneficial drug delivery properties and has been studied as a carrier for anticancer agents. Consequently, we synthesised cytotoxic platinum(IV) conjugates of cisplatin, carboplatin and oxaliplatin by coupling via amide bonds to five GCPQ polymers differing in their degree of palmitoylation and quaternisation. The conjugates were characterised by 1H and 195Pt NMR spectroscopy as well as inductively coupled plasma mass spectrometry (ICP-MS), the latter to determine the amount of platinum(IV) units per GCPQ polymer. Cytotoxicity was evaluated by the MTT assay in three human cancer cell lines (A549, non-small-cell lung carcinoma; CH1/PA-1, ovarian teratocarcinoma; SW480, colon adenocarcinoma). All conjugates displayed a high increase in their cytotoxic activity by factors of up to 286 times compared to their corresponding platinum(IV) complexes and mostly outperformed the respective platinum(II) counterparts by factors of up to 20 times, also taking into account the respective loading of platinum(IV) units per GCPQ polymer. Finally, a biodistribution experiment was performed with an oxaliplatin-based GCPQ conjugate in non-tumour-bearing BALB/c mice revealing an increased accumulation in lung tissue. These findings open promising opportunities for further tumouricidal activity studies especially focusing on lung tissue

    Post-Variscan thermal and tectonic evolution of the KTB site and its surroundings

    Get PDF
    The post-Carboniferous crustal evolution of the German Continental Deep Drilling Program (KTB) area, as summarized in this paper, could not be predicted from surface observations: deep drilling was essential for its revelation, The most conspicuous and unexpected feature discovered in the drill hole is the absence of marked gradients with respect to the pre-Carboniferous record, There are no depth-related differences in K-Ar cooling ages of hornblende and white mica, in petrology or in lithology, All metamorphic rocks encountered, both at the surface as well as in the drill hole down to 9100 m depth, were below 300 degrees C from the Carboniferous onward. The late to post-Carboniferous deformation is essentially confined to several fault zones, A major fault zone encountered in the drill hole at 7000 m depth is linked by a prominent seismic reflector to the Franconian Lineament, the surface boundary between Variscan basement and Mesozoic cover, This fault zone probably formed in the late Paleozoic and reactivated as a reverse fault in the Mesozoic. Two important episodes of NE-SW directed shortening by movements along reverse faults took place in the early Triassic and in the late Cretaceous, as indicated by the distribution of apatite and titanite fission-track ages, the sericite K-Ar ages of fault rocks, and the sedimentary record in the adjacent basins, Upper crustal slices were detached at a specific level, corresponding to the approximate position of the brittle-ductile transition in post-Variscan times, and form an antiformal stack that was penetrated by the KTB throughout its entire depth range.</p
    corecore