8 research outputs found
The establishment of hepatocyte cell surface polarity during fetal liver development
Antibodies to six glycoproteins present in different domains of the hepatocyte plasma membrane were used to study the establishment of cell surface polarity during rat fetal liver development. The proteins were immunoprecipitated from fetal liver homogenates between 14 and 21 days of gestation and quantified by immunoblotting. Aminopeptidase N, CE 9, and HA 321, which reside in the apical, basolateral, and lateral plasma membrane in the adult hepatocyte, respectively, were present in high concentrations at 14 days of gestation and remained high until birth. In contrast, two apical proteins (HA 4 and dipeptidyl peptidase IV) and two basolateral proteins (ASGP receptor and EGF receptor) were first detected between 16 and 18 days of gestation and increased linearly until birth. HA 4 was the only molecule for which the fetal and adult forms differed, with the former having a faster mobility on SDS-PAGE, due to differences in N-linked oligosaccharides. With two exceptions, the localization of the molecules from earliest detection was restricted to the same domain as that in the adult. At 15 days of gestation, HA 321 and a small portion of aminopeptidase were detected on the basolateral membrane. By 21 days both molecules had assumed their adult localization pattern. Our results indicate that the biogenesis of cell surface polarity is an early event, implying that the mechanisms for sorting plasma membrane molecules are functional very early in development. Furthermore, the different patterns of appearance of the six molecules, irrespective of domain, indicate that the biochemical composition of the cell surface changes dramatically during fetal liver development. © 1987
Abstract 991: Cadherin-cadherin engagement promotes cell survival via Rac/Cdc42 and Stat3
Abstract
Stat3 (signal transducer and activator of transcription-3) is activated by a number of receptor and non-receptor tyrosine kinases, while a constitutively active form of Stat3 alone is sufficient to induce neoplastic transformation. We recently demonstrated a dramatic increase in the activity of Stat3 in breast carcinoma as well as normal epithelial cells and fibroblasts, as a consequence of cell to cell adhesion (Oncogene 23:2600). Given the generally accepted, positive role of Stat3 in proliferation, the Stat3 activity increase observed in confluent cells, that is when cells do not divide, was an unexpected observation. Interestingly, by plating cells onto surfaces coated with fragments encompassing the two outermost domains of E-cadherin and cadherin-11, two members of the classical type I and II cadherin family of surface receptors, responsible for the formation of cell to cell junctions, we demonstrated that cadherin engagement per se can directly activate Stat3, in the absence of cell to cell contact. Examination of the mechanism of the cadherin-mediated, Stat3 activation unexpectedly revealed for the first time a dramatic surge in total Rac1 and Cdc42 protein levels by cadherin engagement, and a proportional increase in Rac1 and Cdc42 activity. Therefore, to examine the potential role of Rac/Cdc42 in the density-dependent, Stat3 activation, the ability of mutationally activated RacV12 to activate Stat3 at high cell densities was examined. The results revealed a dramatic increase in protein levels and activity of both the endogenous Rac and RacV12 with cell density, which was due to inhibition of proteasomal degradation in both cases. In addition, RacV12-expressing cells had higher Stat3, tyrosine-705 phosphorylation and activity levels at all densities, indicating that RacV12 is, in fact, able to activate Stat3. Further examination of the mechanism of Stat3 activation showed that both cadherin engagement and RacV12 expression caused a surge in mRNA of Interleukin-6 (IL6) family cytokines, known potent Stat3 activators. Knockdown of gp130, the common subunit of this family reduced Stat3 activity in densely growing normal, as well as in RacV12-transformed cells, indicating that the IL6 family may be responsible for the Stat3 activation both by cadherin engagement and Rac mutational activation. Indeed, Rac knockdown reduced the density-mediated, Stat3 activation, indicating that Rac is responsible for the Stat3 stimulation observed upon cadherin ligation. Inhibition of cadherin interactions using a peptide, a soluble cadherin fragment or genetic ablation induced apoptosis, pointing to a significant role of this pathway in cell survival signalling, a finding which could also have important therapeutic implications. (supported by CIHR, CBCF-Ontario chapter, US Army breast cancer program, NSERC and Breast Cancer Action Kingston).
Note: This abstract was not presented at the AACR 101st Annual Meeting 2010 because the presenter was unable to attend.
Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research; 2010 Apr 17-21; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2010;70(8 Suppl):Abstract nr 991.</jats:p
Surface engineered magnetic nanoparticles for specific immunotargeting of cadherin expressing cells
Abstract
In spite of historic advances in cancer biology and recent development of sophisticated chemotherapeutics, the outlook for patients with advanced cancer is still grim. In this sense nanoparticles (NPs), through their unique physical properties, enable the development of new approaches for cancer diagnosis and treatment. Thus far the most used active targeting scheme involves NPs functionalization with antibodies specific to molecules overexpressed on cancer cell’s surface. Therefore, such active targeting relies on differences in NPs uptake kinetics rates between tumor and healthy cells. Many cancers of epithelial origin are associated with the inappropriate expression of non-epithelial cadherins (e.g. N-, P-, -11) with concomitant loss of E-cadherin. Such phenomenon named cadherin switching favors tumor development and metastasis via interactions of tumor cells with stromal components. That is why we optimized the oriented functionalization of fluorescently labelled magnetic NPs with a novel antibody specific for the extracellular domain of cadherin-11. The obtained Ab-NPs exhibited high specificity when incubated with two cell lines used as models of tumor and healthy cells. Thus, cadherin switching offers a great opportunity for the development of active targeting strategies aimed to improve the early detection and treatment of cancer.</jats:p
Surface engineered magnetic nanoparticles for specific immunotargeting of cadherin expressing cells
In spite of historic advances in cancer biology and recent development of sophisticated chemotherapeutics, the outlook for patients with advanced cancer is still grim. In this sense nanoparticles (NPs), through their unique physical properties, enable the development of new approaches for cancer diagnosis and treatment. Thus far the most used active targeting scheme involves NPs functionalization with antibodies specific to molecules overexpressed on cancer cell's surface. Therefore, such active targeting relies on differences in NPs uptake kinetics rates between tumor and healthy cells. Many cancers of epithelial origin are associated with the inappropriate expression of non-epithelial cadherins (e.g. N-, P-, -11) with concomitant loss of E-cadherin. Such phenomenon named cadherin switching favors tumor development and metastasis via interactions of tumor cells with stromal components. That is why we optimized the oriented functionalization of fluorescently labelled magnetic NPs with a novel antibody specific for the extracellular domain of cadherin-11. The obtained Ab-NPs exhibited high specificity when incubated with two cell lines used as models of tumor and healthy cells. Thus, cadherin switching offers a great opportunity for the development of active targeting strategies aimed to improve the early detection and treatment of cancer.This work was supported by SAF2014-54763-C2-R (Ministerio de Economía y Competitividad), ERC-Starting Grant 239931-NANOPUZZLE project, Fondo Social Europeo (FSE; Gobierno de Aragón), Communauté de Travail des Pyrénées (P5/13 Gobierno de Aragón and 13010774 Région Aquitaine), SUDOE Train2 program and institutional funding from CNRS. BS was supported by a post-doctoral fellowship from the Instituto de Salud Carlos III in the Sara Borell program.Peer Reviewe
Creating Biomimetic Surfaces through Covalent and Oriented Binding of Proteins
This manuscript describes a novel method for the biofunctionalization of glass surfaces with polyhistidine-tagged proteins. The main innovation of this methodology consists of the covalent binding between the nitrilotriacetic acid (NTA) moiety and the proteins, ensuring not only orientation, but also stability of the recombinant proteins on NTA-covered surfaces. In this work, as C-terminal polyhistidine tagged cadherin extracellular fragments have been used, this methodology guarantees the proper orientation of these proteins, by mimicking their insertion into cell plasma membranes. These biofunctionalized surfaces have been characterized by confocal microscopy, X-ray photoelectron spectroscopy, contact angle, and atomic force microscopy, showing a high density of cadherins on the glass surfaces and the stability of the linkage. The prepared materials exhibited a high tendency to promote cell spreading, demonstrating the functionality of the protein and the high utility of these biomaterials to promote cell adhesion events. Interestingly, differences in the cytoskeleton organization have been observed in cells adhering to surfaces with no cadherins or with nonoriented cadherins, in comparison to surfaces functionalized with well-oriented cadherins. This method, which allows the robust immobilization of polyhistidine tagged proteins due to their covalent binding and with a defined orientation, may also find particular usefulness in the making of protein biochips, for analysis of protein−protein interactions, as well as structural and single-molecule studies
Biogenese de la membrane du pole apical de l'enterocyte in vivo et dans la cellule thyroiedienne en culture
CNRS AR 10612 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueSIGLEFRFranc
