928 research outputs found
Adaptive Mixture Methods Based on Bregman Divergences
We investigate adaptive mixture methods that linearly combine outputs of
constituent filters running in parallel to model a desired signal. We use
"Bregman divergences" and obtain certain multiplicative updates to train the
linear combination weights under an affine constraint or without any
constraints. We use unnormalized relative entropy and relative entropy to
define two different Bregman divergences that produce an unnormalized
exponentiated gradient update and a normalized exponentiated gradient update on
the mixture weights, respectively. We then carry out the mean and the
mean-square transient analysis of these adaptive algorithms when they are used
to combine outputs of constituent filters. We illustrate the accuracy of
our results and demonstrate the effectiveness of these updates for sparse
mixture systems.Comment: Submitted to Digital Signal Processing, Elsevier; IEEE.or
Learning with a Drifting Target Concept
We study the problem of learning in the presence of a drifting target
concept. Specifically, we provide bounds on the error rate at a given time,
given a learner with access to a history of independent samples labeled
according to a target concept that can change on each round. One of our main
contributions is a refinement of the best previous results for polynomial-time
algorithms for the space of linear separators under a uniform distribution. We
also provide general results for an algorithm capable of adapting to a variable
rate of drift of the target concept. Some of the results also describe an
active learning variant of this setting, and provide bounds on the number of
queries for the labels of points in the sequence sufficient to obtain the
stated bounds on the error rates
Bandit Online Optimization Over the Permutahedron
The permutahedron is the convex polytope with vertex set consisting of the
vectors for all permutations (bijections) over
. We study a bandit game in which, at each step , an
adversary chooses a hidden weight weight vector , a player chooses a
vertex of the permutahedron and suffers an observed loss of
.
A previous algorithm CombBand of Cesa-Bianchi et al (2009) guarantees a
regret of for a time horizon of . Unfortunately,
CombBand requires at each step an -by- matrix permanent approximation to
within improved accuracy as grows, resulting in a total running time that
is super linear in , making it impractical for large time horizons.
We provide an algorithm of regret with total time
complexity . The ideas are a combination of CombBand and a recent
algorithm by Ailon (2013) for online optimization over the permutahedron in the
full information setting. The technical core is a bound on the variance of the
Plackett-Luce noisy sorting process's "pseudo loss". The bound is obtained by
establishing positive semi-definiteness of a family of 3-by-3 matrices
generated from rational functions of exponentials of 3 parameters
- …
