45 research outputs found

    Effects of discrete energy and helicity conservation in numerical simulations of helical turbulence

    Full text link
    Helicity is the scalar product between velocity and vorticity and, just like energy, its integral is an in-viscid invariant of the three-dimensional incompressible Navier-Stokes equations. However, space-and time-discretization methods typically corrupt this property, leading to violation of the inviscid conservation principles. This work investigates the discrete helicity conservation properties of spectral and finite-differencing methods, in relation to the form employed for the convective term. Effects due to Runge-Kutta time-advancement schemes are also taken into consideration in the analysis. The theoretical results are proved against inviscid numerical simulations, while a scale-dependent analysis of energy, helicity and their non-linear transfers is performed to further characterize the discretization errors of the different forms in forced helical turbulence simulations

    Quality evaluation of olive oil by statistical analysis of multicomponent stable isotope dilution assay data of aroma active compounds

    Get PDF
    An instrumental method for the evaluation of olive oil quality was developed. Twenty-one relevant aroma active compounds were quantified in 95 olive oil samples of different quality by headspace solid phase microextraction (HS-SPME) and dynamic headspace coupled to GC-MS. On the basis of these stable isotope dilution assay results, statistical evaluation by partial least-squares discriminant analysis (PLS-DA) was performed. Important variables were the odor activity values of ethyl isobutanoate, ethyl 2-methylbutanoate, 3-methylbutanol, butyric acid, E,E-2,4-decadienal, hexanoic acid, guaiacol, 2-phenylethanol, and the sum of the odor activity values of Z-3-hexenal, E-2-hexenal, Z-3-hexenyl acetate, and Z-3-hexenol. Classification performed with these variables predicted 88% of the olive oils? quality correctly. Additionally, the aroma compounds, which are characteristic for some off-flavors, were dissolved in refined plant oil. Sensory evaluation of these models demonstrated that the off-flavors rancid, fusty, and vinegary could be successfully simulated by a limited number of odorants

    Exposure assessment of process-related contaminants in food by biomarker monitoring

    Get PDF
    Exposure assessment is a fundamental part of the risk assessment paradigm, but can often present a number of challenges and uncertainties. This is especially the case for process contaminants formed during the processing, e.g. heating of food, since they are in part highly reactive and/or volatile, thus making exposure assessment by analysing contents in food unreliable. New approaches are therefore required to accurately assess consumer exposure and thus better inform the risk assessment. Such novel approaches may include the use of biomarkers, physiologically based kinetic (PBK) modelling-facilitated reverse dosimetry, and/or duplicate diet studies. This review focuses on the state of the art with respect to the use of biomarkers of exposure for the process contaminants acrylamide, 3-MCPD esters, glycidyl esters, furan and acrolein. From the overview presented, it becomes clear that the field of assessing human exposure to process-related contaminants in food by biomarker monitoring is promising and strongly developing. The current state of the art as well as the existing data gaps and challenges for the future were defined. They include (1) using PBK modelling and duplicate diet studies to establish, preferably in humans, correlations between external exposure and biomarkers; (2) elucidation of the possible endogenous formation of the process-related contaminants and the resulting biomarker levels; (3) the influence of inter-individual variations and how to include that in the biomarker-based exposure predictions; (4) the correction for confounding factors; (5) the value of the different biomarkers in relation to exposure scenario’s and risk assessment, and (6) the possibilities of novel methodologies. In spite of these challenges it can be concluded that biomarker-based exposure assessment provides a unique opportunity to more accurately assess consumer exposure to process-related contaminants in food and thus to better inform risk assessment

    by Aroma Extract Dilution Analysis and by Gas Chromatography-Olfactometry of Headspace Samples

    No full text

    Evaluation of Important Odorants in Foods by Dilution Techniques

    Full text link

    12-Methyltridecanal, a Species-Specific Odorant of Stewed Beef

    Full text link
    corecore