298 research outputs found
Representative factor generation for the interactive visual analysis of high-dimensional data
Datasets with a large number of dimensions per data item (hundreds or more) are challenging both for computational and visual analysis. Moreover, these dimensions have different characteristics and relations that result in sub-groups and/or hierarchies over the set of dimensions. Such structures lead to heterogeneity within the dimensions. Although the consideration of these structures is crucial for the analysis, most of the available analysis methods discard the heterogeneous relations among the dimensions. In this paper, we introduce the construction and utilization of representative factors for the interactive visual analysis of structures in high-dimensional datasets. First, we present a selection of methods to investigate the sub-groups in the dimension set and associate representative factors with those groups of dimensions. Second, we introduce how these factors are included in the interactive visual analysis cycle together with the original dimensions. We then provide the steps of an analytical procedure that iteratively analyzes the datasets through the use of representative factors. We discuss how our methods improve the reliability and interpretability of the analysis process by enabling more informed selections of computational tools. Finally, we demonstrate our techniques on the analysis of brain imaging study results that are performed over a large group of subjects
Recommended from our members
Designing Progressive and Interactive Analytics Processes for High-Dimensional Data Analysis
In interactive data analysis processes, the dialogue between the human and the computer is the enabling mechanism that can lead to actionable observations about the phenomena being investigated. It is of paramount importance that this dialogue is not interrupted by slow computational mechanisms that do not consider any known temporal human-computer interaction characteristics that prioritize the perceptual and cognitive capabilities of the users. In cases where the analysis involves an integrated computational method, for instance to reduce the dimensionality of the data or to perform clustering, such non-optimal processes are often likely. To remedy this, progressive computations, where results are iteratively improved, are getting increasing interest in visual analytics. In this paper, we present techniques and design considerations to incorporate progressive methods within interactive analysis processes that involve high-dimensional data. We define methodologies to facilitate processes that adhere to the perceptual characteristics of users and describe how online algorithms can be incorporated within these. A set of design recommendations and according methods to support analysts in accomplishing high-dimensional data analysis tasks are then presented. Our arguments and decisions here are informed by observations gathered over a series of analysis sessions with analysts from finance. We document observations and recommendations from this study and present evidence on how our approach contribute to the efficiency and productivity of interactive visual analysis sessions involving high-dimensional data
The State of the Art in Flow Visualization: Dense and Texture-Based Techniques
Flow visualization has been a very attractive component of scientific visualization research for a long time. Usually very large multivariate datasets require processing. These datasets often consist of a large number of sample locations and several time steps. The steadily increasing performance of computers has recently become a driving factor for a reemergence in flow visualization research, especially in texture-based techniques. In this paper, dense, texture-based flow visualization techniques are discussed. This class of techniques attempts to provide a complete, dense representation of the flow field with high spatio-temporal coherency. An attempt of categorizing closely related solutions is incorporated and presented. Fundamentals are shortly addressed as well as advantages and disadvantages of the methods. Categories and Subject Descriptors (according to ACM CCS): I.3 [Computer Graphics]: visualization, flow visualization, computational flow visualizatio
Personalized Sketch-Based Brushing in Scatterplots
Brushing is at the heart of most modern visual analytics solutions and effective and efficient brushing is crucial for successful interactive data exploration and analysis. As the user plays a central role in brushing, several data-driven brushing tools have been designed that are based on predicting the user's brushing goal. All of these general brushing models learn the users' average brushing preference, which is not optimal for every single user. In this paper, we propose an innovative framework that offers the user opportunities to improve the brushing technique while using it. We realized this framework with a CNN-based brushing technique and the result shows that with additional data from a particular user, the model can be refined (better performance in terms of accuracy), eventually converging to a personalized model based on a moderate amount of retraining.acceptedVersio
Recommended from our members
Interactive Visual Analysis of Heterogeneous Cohort Study Data
Cohort studies in medicine are conducted to enable the study of medical hypotheses in large samples. Often, a large amount of heterogeneous data is acquired from many subjects. The analysis is usually hypothesis-driven, i.e., a specific subset of such data is studied to confirm or reject specific hypotheses. In this paper, we demonstrate how we enable the interactive visual exploration and analysis of such data, helping with the generation of new hypotheses and contributing to the process of validating them. We propose a data-cube based model which handles partially overlapping data subsets during the interactive visualization. This model enables seamless integration of the heterogeneous data, as well as linking spatial and non-spatial views on these data. We implemented this model in an application prototype, and used it to analyze data acquired in the context of a cohort study on cognitive aging. We present case-study analyses of selected aspects of brain connectivity by using the prototype implementation of the presented model, to demonstrate its potential and flexibility
Scale-Space Splatting: Reforming Spacetime for the Cross-Scale Exploration of Integral Measures in Molecular Dynamics
Understanding large amounts of spatiotemporal data from particle-based
simulations, such as molecular dynamics, often relies on the computation and
analysis of aggregate measures. These, however, by virtue of aggregation, hide
structural information about the space/time localization of the studied
phenomena. This leads to degenerate cases where the measures fail to capture
distinct behaviour. In order to drill into these aggregate values, we propose a
multi-scale visual exploration technique. Our novel representation, based on
partial domain aggregation, enables the construction of a continuous
scale-space for discrete datasets and the simultaneous exploration of scales in
both space and time. We link these two scale-spaces in a scale-space space-time
cube and model linked views as orthogonal slices through this cube, thus
enabling the rapid identification of spatio-temporal patterns at multiple
scales. To demonstrate the effectiveness of our approach, we showcase an
advanced exploration of a protein-ligand simulation.Comment: 11 pages, 9 figures, IEEE SciVis 201
Interactive Focus+Context Visualization with Linked 2D/3D Scatterplots
Scatterplots in 2D and 3D are very useful tools, but also suffer from a number of problems. Overplotting hides the true number of points that are displayed, and showing point clouds in 3D is problematic both in terms of perception and interaction. We propose
- …
