35,015 research outputs found

    Complex Bifurcation from Real Paths

    Get PDF
    A new bifurcation phenomenon, called complex bifurcation, is studied. The basic idea is simply that real solution paths of real analytic problems frequently have complex paths bifurcating from them. It is shown that this phenomenon occurs at fold points, at pitchfork bifurcation points, and at isola centers. It is also shown that perturbed bifurcations can yield two disjoint real solution branches that are connected by complex paths bifurcating from the perturbed solution paths. This may be useful in finding new real solutions. A discussion of how existing codes for computing real solution paths may be trivially modified to compute complex paths is included, and examples of numerically computed complex solution paths for a nonlinear two point boundary value problem, and a problem from fluid mechanics are given

    Selectively excited luminescence and magnetic circular dichroism of Cr4+-doped YAG and YGG

    Get PDF
    Site selective luminescence and magnetic circular dichroism experiments on Cr4+-doped yttrium aluminum garnet and yttrium gallium garnet have been made at low temperature. The spectral assignments for these near-IR lasing materials have been made using experimental data and ligand field calculations guided by the known geometry of the lattices. [S0163-1829(99)07003-4]

    The OLYMPUS Internal Hydrogen Target

    Get PDF
    An internal hydrogen target system was developed for the OLYMPUS experiment at DESY, in Hamburg, Germany. The target consisted of a long, thin-walled, tubular cell within an aluminum scattering chamber. Hydrogen entered at the center of the cell and exited through the ends, where it was removed from the beamline by a multistage pumping system. A cryogenic coldhead cooled the target cell to counteract heating from the beam and increase the density of hydrogen in the target. A fixed collimator protected the cell from synchrotron radiation and the beam halo. A series of wakefield suppressors reduced heating from beam wakefields. The target system was installed within the DORIS storage ring and was successfully operated during the course of the OLYMPUS experiment in 2012. Information on the design, fabrication, and performance of the target system is reported.Comment: 9 pages, 13 figure

    Fusion-Fission of 16O+197Au at Sub-Barrier Energies

    Get PDF
    The recent discovery of heavy-ion fusion hindrance at far sub-barrier energies has focused much attention on both experimental and theoretical studies of this phenomenon. Most of the experimental evidence comes from medium-heavy systems such as Ni+Ni to Zr+Zr, for which the compound system decays primarily by charged-particle evaporation. In order to study heavier systems, it is, however, necessary to measure also the fraction of the decay that goes into fission fragments. In the present work we have, therefore, measured the fission cross section of 16O+197Au down to unprecedented far sub-barrier energies using a large position sensitive PPAC placed at backward angles. The preliminary cross sections will be discussed and compared to earlier studies at near-barrier energies. No conclusive evidence for sub-barrier hindrance was found, probably because the measurements were not extended to sufficiently low energies.Comment: Fusion06 - Intl. Conf. on Reaction Mechanisms and Nuclear Structure at the Coulomb Barrier, San Servolo, Venezia, Italy, March 19-223, 2006 5 pages, 4 figure

    Non-locality and short-range wetting phenomena

    Get PDF
    We propose a non-local interfacial model for 3D short-range wetting at planar and non-planar walls. The model is characterized by a binding potential \emph{functional} depending only on the bulk Ornstein-Zernike correlation function, which arises from different classes of tube-like fluctuations that connect the interface and the substrate. The theory provides a physical explanation for the origin of the effective position-dependent stiffness and binding potential in approximate local theories, and also obeys the necessary classical wedge covariance relationship between wetting and wedge filling. Renormalization group and computer simulation studies reveal the strong non-perturbative influence of non-locality at critical wetting, throwing light on long-standing theoretical problems regarding the order of the phase transition.Comment: 4 pages, 2 figures, accepted for publication in Phys. Rev. Let

    First energetic neutral atom images from Polar

    Get PDF
    Energetic neutral atoms are created when energetic magnetospheric ions undergo charge exchange with cold neutral atoms in the Earth\u27s tenuous extended atmosphere (the geocorona). Since they are unaffected by the Earth\u27s magnetic field, these energetic neutrals travel away in straight line trajectories from the points of charge exchange. The remote detection of these particles provides a powerful means through which the global distribution and properties of the geocorona and ring current can be inferred. Due to its 2 × 9 RE polar orbit, the Polar spacecraft provides an excellent platform from which to observe ENAs because it spends much of its time in the polar caps which are usually free from the contaminating energetic charged particles that make observations of ENAs more difficult. In this brief report, we present the first ENA imaging results from Polar. Storm-time ENA images are presented for a northern polar cap apogee pass on August 29, 1996 and for a southern polar cap perigee pass on October 23, 1996. As well, we show with a third event (July 31, 1996) that ENA emissions can also be detected in association with individual substorm

    The trapping of equatorial magnetosonic waves in the Earth’s outer plasmasphere

    Get PDF
    Abstract We investigate the excitation and propagation of equatorial magnetosonic waves observed by the Van Allen Probes and describe evidence for a trapping mechanism for magnetosonic waves in the Earth\u27s plasmasphere. Intense equatorial magnetosonic waves were observed inside the plasmasphere in association with a pronounced proton ring distribution, which provides free energy for wave excitation. Instability analysis along the inbound orbit demonstrates that broadband magnetosonic waves can be excited over a localized spatial region near the plasmapause. The waves can subsequently propagate into the inner plasmasphere and remain trapped over a limited radial extent, consistent with the predictions of near-perpendicular propagation. By performing a similar analysis on another observed magnetosonic wave event, we demonstrate that magnetosonic waves can also be trapped within local density structures. We suggest that perpendicular wave propagation is important for explaining the presence of magnetosonic waves in the Earth\u27s plasmasphere at locations away from the generation region. Key Points Magnetosonic waves are excited by ion ring distributions near the plasmapauseMagnetosonic waves are trapped in a limited radial region in the plasmasphereMagnetosonic waves are modulated by local density structures
    corecore