642 research outputs found

    Identification of high-permeability subsurface structures with multiple point geostatistics and normal score ensemble Kalman filter

    Get PDF
    Alluvial aquifers are often characterized by the presence of braided high-permeable paleo-riverbeds, which constitute an interconnected preferential flow network whose localization is of fundamental importance to predict flow and transport dynamics. Classic geostatistical approaches based on two-point correlation (i.e., the variogram) cannot describe such particular shapes. In contrast, multiple point geostatistics can describe almost any kind of shape using the empirical probability distribution derived from a training image. However, even with a correct training image the exact positions of the channels are uncertain. State information like groundwater levels can constrain the channel positions using inverse modeling or data assimilation, but the method should be able to handle non-Gaussianity of the parameter distribution. Here the normal score ensemble Kalman filter (NS-EnKF) was chosen as the inverse conditioning algorithm to tackle this issue. Multiple point geostatistics and NS-EnKF have already been tested in synthetic examples, but in this study they are used for the first time in a real-world casestudy. The test site is an alluvial unconfined aquifer in northeastern Italy with an extension of approximately 3 km2. A satellite training image showing the braid shapes of the nearby river and electrical resistivity tomography (ERT) images were used as conditioning data to provide information on channel shape, size, and position. Measured groundwater levels were assimilated with the NS-EnKF to update the spatially distributed groundwater parameters (hydraulic conductivity and storage coefficients). Results from the study show that the inversion based on multiple point geostatistics does not outperform the one with a multiGaussian model and that the information from the ERT images did not improve site characterization. These results were further evaluated with a synthetic study that mimics the experimental site. The synthetic results showed that only for a much larger number of conditioning piezometric heads, multiple point geostatistics and ERT could improve aquifer characterization. This shows that state of the art stochastic methods need to be supported by abundant and high-quality subsurface data

    Analysis of the impact of climate change on groundwater related hydrological fluxes: a multi-model approach including different downscaling methods

    Get PDF
    Climate change related modifications in the spatio-temporal distribution of precipitation and evapotranspiration will have an impact on groundwater resources. This study presents a modelling approach exploiting the advantages of integrated hydrological modelling and a broad climate model basis. We applied the integrated MIKE SHE model on a perialpine, small catchment in northern Switzerland near Zurich. To examine the impact of climate change we forced the hydrological model with data from eight GCM-RCM combinations showing systematic biases which are corrected by three different statistical downscaling methods, not only for precipitation but also for the variables that govern potential evapotranspiration. The downscaling methods are evaluated in a split sample test and the sensitivity of the downscaling procedure on the hydrological fluxes is analyzed. The RCMs resulted in very different projections of potential evapotranspiration and, especially, precipitation. All three downscaling methods reduced the differences between the predictions of the RCMs and all corrected predictions showed no future groundwater stress which can be related to an expected increase in precipitation during winter. It turned out that especially the timing of the precipitation and thus recharge is very important for the future development of the groundwater levels. However, the simulation experiments revealed the weaknesses of the downscaling methods which directly influence the predicted hydrological fluxes, and thus also the predicted groundwater levels. The downscaling process is identified as an important source of uncertainty in hydrological impact studies, which has to be accounted for. Therefore it is strongly recommended to test different downscaling methods by using verification data before applying them to climate model data

    An empirical vegetation correction for soil water content quantification using cosmic ray probes

    Get PDF
    Cosmic ray probes are an emerging technology to continuously monitor soil water content at a scale significant to land surface processes. However, the application of this method is hampered by its susceptibility to the presence of aboveground biomass. Here we present a simple empirical framework to account for moderation of fast neutrons by aboveground biomass in the calibration. The method extends the N0-calibration function and was developed using an extensive data set from a network of 10 cosmic ray probes located in the Rur catchment, Germany. The results suggest a 0.9% reduction in fast neutron intensity per 1 kg of dry aboveground biomass per m2 or per 2 kg of biomass water equivalent per m2. We successfully tested the novel vegetation correction using temporary cosmic ray probe measurements along a strong gradient in biomass due to deforestation, and using the COSMIC, and the hmf method as independent soil water content retrieval algorithms. The extended N0-calibration function was able to explain 95% of the overall variability in fast neutron intensity

    How can remote sensing contribute in groundwater modeling?

    Get PDF
    Groundwater resources assessment, modeling and management are hampered considerably by a lack of data, especially in semi-arid and arid environments with a weak observation infrastructure. Usually, only a limited number of point measurements are available, while groundwater models need spatial and temporal distributions of input and calibration data. If such data are not available, models cannot play their proper role in decision support as they are notoriously underdetermined and uncertain. Recent developments in remote sensing have opened new sources for distributed spatial data. As the relevant entities such as water fluxes, heads or transmissivities cannot be observed directly by remote sensing, ways have to be found to link the observable quantities to input data required by the model. An overview of the possibilities for employing remote-sensing observations in groundwater modeling is given, supported by examples in Botswana and China. The main possibilities are: (1) use of remote-sensing data to create some of the spatially distributed input parameter sets for a model, and (2) constraining of models during calibration by spatially distributed data derived from remote sensing. In both, models can be improved conceptually and quantitativel

    Assessing large-scale weekly cycles in meteorological variables: a review

    Get PDF
    Several studies have claimed to have found significant weekly cycles of meteorological variables appearing over large domains, which can hardly be related to urban effects exclusively. Nevertheless, there is still an ongoing scientific debate whether these large-scale weekly cycles exist or not, and some other studies fail to reproduce them with statistical significance. In addition to the lack of the positive proof for the existence of these cycles, their possible physical explanations have been controversially discussed during the last years. In this work we review the main results about this topic published during the recent two decades, including a summary of the existence or non-existence of significant weekly weather cycles across different regions of the world, mainly over the US, Europe and Asia. In addition, some shortcomings of common statistical methods for analyzing weekly cycles are listed. Finally, a brief summary of supposed causes of the weekly cycles, focusing on the aerosol-cloud-radiation interactions and their impact on meteorological variables as a result of the weekly cycles of anthropogenic activities, and possible directions for future research, is presented

    Assimilation of Cosmogenic Neutron Counts for Improved Soil Moisture Prediction in a Distributed Land Surface Model

    Get PDF
    Cosmic-Ray Neutron Sensing (CRNS) offers a non-invasive method for estimating soil moisture at the field scale, in our case a few tens of hectares. The current study uses the Ensemble Adjustment Kalman Filter (EAKF) to assimilate neutron counts observed at four locations within a 655 km2^{2} pre-alpine river catchment into the Noah-MP land surface model (LSM) to improve soil moisture simulations and to optimize model parameters. The model runs with 100 m spatial resolution and uses the EU-SoilHydroGrids soil map along with the Mualem–van Genuchten soil water retention functions. Using the state estimation (ST) and joint state–parameter estimation (STP) technique, soil moisture states and model parameters controlling infiltration and evaporation rates were optimized, respectively. The added value of assimilation was evaluated for local and regional impacts using independent root zone soil moisture observations. The results show that during the assimilation period both ST and STP significantly improved the simulated soil moisture around the neutron sensors locations with improvements of the root mean square errors between 60 and 62% for ST and 55–66% for STP. STP could further enhance the model performance for the validation period at assimilation locations, mainly by reducing the Bias. Nevertheless, due to a lack of convergence of calculated parameters and a shorter evaluation period, performance during the validation phase degraded at a site further away from the assimilation locations. The comparison of modeled soil moisture with field-scale spatial patterns of a dense network of CRNS observations showed that STP helped to improve the average wetness conditions (reduction of spatial Bias from –0.038 cm3^{3} cm3^{-3} to –0.012 cm3^{3} cm3^{-3}) for the validation period. However, the assimilation of neutron counts from only four stations showed limited success in enhancing the field-scale soil moisture patterns

    Jointly mapping hydraulic conductivity and porosity by assimilating concentration data via ensemble Kalman filter

    Full text link
    [EN] Real-time data from on-line sensors offer the possibility to update environmental simulation models in real-time. Information from on-line sensors concerning contaminant concentrations in groundwater allow for the real-time characterization and control of a contaminant plume. In this paper it is proposed to use the CPU-efficient Ensemble Kalman Filter (EnKF) method, a data assimilation algorithm, for jointly updating the flow and transport parameters (hydraulic conductivity and porosity) and state variables (piezometric head and concentration) of a groundwater flow and contaminant transport problem. A synthetic experiment is used to demonstrate the capability of the EnKF to estimate hydraulic conductivity and porosity by assimilating dynamic head and multiple concentration data in a transient flow and transport model. In this work the worth of hydraulic conductivity, porosity, piezometric head, and concentration data is analyzed in the context of aquifer characterization and prediction uncertainty reduction. The results indicate that the characterization of the hydraulic conductivity and porosity fields is continuously improved as more data are assimilated. Also, groundwater flow and mass transport predictions are improved as more and different types of data are assimilated. The beneficial impact of accounting for multiple concentration data is patent. © 2012 Elsevier B.V.The authors gratefully acknowledge the financial support by ENRESA (Project 0079000029) and the Spanish Ministry of Science and Innovation (Project CGL2011-23295). Extra travel Grants awarded to the first and second author by the Ministry of Education (Spain) are also acknowledged. Dr. Jichun Wu and an anonymous reviewer are grateful acknowledged for their comments which helped improving the final version of the manuscript.Li, L.; Zhou, H.; Gómez-Hernández, JJ.; Hendricks-Franssen, HJ. (2012). Jointly mapping hydraulic conductivity and porosity by assimilating concentration data via ensemble Kalman filter. Journal of Hydrology. 428:152-169. https://doi.org/10.1016/j.jhydrol.2012.01.037S15216942
    corecore