6,496 research outputs found
An evaluation of intrusive instrumental intelligibility metrics
Instrumental intelligibility metrics are commonly used as an alternative to
listening tests. This paper evaluates 12 monaural intrusive intelligibility
metrics: SII, HEGP, CSII, HASPI, NCM, QSTI, STOI, ESTOI, MIKNN, SIMI, SIIB, and
. In addition, this paper investigates the ability of
intelligibility metrics to generalize to new types of distortions and analyzes
why the top performing metrics have high performance. The intelligibility data
were obtained from 11 listening tests described in the literature. The stimuli
included Dutch, Danish, and English speech that was distorted by additive
noise, reverberation, competing talkers, pre-processing enhancement, and
post-processing enhancement. SIIB and HASPI had the highest performance
achieving a correlation with listening test scores on average of
and , respectively. The high performance of SIIB may, in part, be
the result of SIIBs developers having access to all the intelligibility data
considered in the evaluation. The results show that intelligibility metrics
tend to perform poorly on data sets that were not used during their
development. By modifying the original implementations of SIIB and STOI, the
advantage of reducing statistical dependencies between input features is
demonstrated. Additionally, the paper presents a new version of SIIB called
, which has similar performance to SIIB and HASPI,
but takes less time to compute by two orders of magnitude.Comment: Published in IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 201
A Low-Cost Robust Distributed Linearly Constrained Beamformer for Wireless Acoustic Sensor Networks with Arbitrary Topology
We propose a new robust distributed linearly constrained beamformer which
utilizes a set of linear equality constraints to reduce the cross power
spectral density matrix to a block-diagonal form. The proposed beamformer has a
convenient objective function for use in arbitrary distributed network
topologies while having identical performance to a centralized implementation.
Moreover, the new optimization problem is robust to relative acoustic transfer
function (RATF) estimation errors and to target activity detection (TAD)
errors. Two variants of the proposed beamformer are presented and evaluated in
the context of multi-microphone speech enhancement in a wireless acoustic
sensor network, and are compared with other state-of-the-art distributed
beamformers in terms of communication costs and robustness to RATF estimation
errors and TAD errors
Waste Management and Minimisation Strategies
Waste minimisation can potentially decrease the amount of waste to landfill by approximately 80%, using readily available means. This project examines ways in which a similar reduction could be achieved at the Australian Technology Park (ATP) and put the ATP at the forefront of waste reduction in NSW. The limitations of the current solid waste management system at the ATP include the lack of recycling services and the poor location of the communal waste facilities
An instrumental intelligibility metric based on information theory
We propose a monaural intrusive instrumental intelligibility metric called
speech intelligibility in bits (SIIB). SIIB is an estimate of the amount of
information shared between a talker and a listener in bits per second. Unlike
existing information theoretic intelligibility metrics, SIIB accounts for
talker variability and statistical dependencies between time-frequency units.
Our evaluation shows that relative to state-of-the-art intelligibility metrics,
SIIB is highly correlated with the intelligibility of speech that has been
degraded by noise and processed by speech enhancement algorithms.Comment: Published in IEEE Signal Processing Letter
- …
