38,575 research outputs found

    Fast construction of FM-index for long sequence reads

    Full text link
    Summary: We present a new method to incrementally construct the FM-index for both short and long sequence reads, up to the size of a genome. It is the first algorithm that can build the index while implicitly sorting the sequences in the reverse (complement) lexicographical order without a separate sorting step. The implementation is among the fastest for indexing short reads and the only one that practically works for reads of averaged kilobases in length. Availability and implementation: https://github.com/lh3/ropebwt2 Contact: [email protected]: 2 page

    Minimap2: pairwise alignment for nucleotide sequences

    Full text link
    Motivation: Recent advances in sequencing technologies promise ultra-long reads of \sim100 kilo bases (kb) in average, full-length mRNA or cDNA reads in high throughput and genomic contigs over 100 mega bases (Mb) in length. Existing alignment programs are unable or inefficient to process such data at scale, which presses for the development of new alignment algorithms. Results: Minimap2 is a general-purpose alignment program to map DNA or long mRNA sequences against a large reference database. It works with accurate short reads of \ge100bp in length, \ge1kb genomic reads at error rate \sim15%, full-length noisy Direct RNA or cDNA reads, and assembly contigs or closely related full chromosomes of hundreds of megabases in length. Minimap2 does split-read alignment, employs concave gap cost for long insertions and deletions (INDELs) and introduces new heuristics to reduce spurious alignments. It is 3-4 times faster than mainstream short-read mappers at comparable accuracy and \ge30 times faster at higher accuracy for both genomic and mRNA reads, surpassing most aligners specialized in one type of alignment. Availability and implementation: https://github.com/lh3/minimap2 Contact: [email protected]: The final submitted versio

    Towards Better Understanding of Artifacts in Variant Calling from High-Coverage Samples

    Full text link
    Motivation: Whole-genome high-coverage sequencing has been widely used for personal and cancer genomics as well as in various research areas. However, in the lack of an unbiased whole-genome truth set, the global error rate of variant calls and the leading causal artifacts still remain unclear even given the great efforts in the evaluation of variant calling methods. Results: We made ten SNP and INDEL call sets with two read mappers and five variant callers, both on a haploid human genome and a diploid genome at a similar coverage. By investigating false heterozygous calls in the haploid genome, we identified the erroneous realignment in low-complexity regions and the incomplete reference genome with respect to the sample as the two major sources of errors, which press for continued improvements in these two areas. We estimated that the error rate of raw genotype calls is as high as 1 in 10-15kb, but the error rate of post-filtered calls is reduced to 1 in 100-200kb without significant compromise on the sensitivity. Availability: BWA-MEM alignment: http://bit.ly/1g8XqRt; Scripts: https://github.com/lh3/varcmp; Additional data: https://figshare.com/articles/Towards_better_understanding_of_artifacts_in_variating_calling_from_high_coverage_samples/981073Comment: Published versio
    corecore