23,129 research outputs found
A phase conjugate mirror inspired approach for building cloaking structures with left-handed materials
In this paper, we propose and examine a new cloaking method, which was inspired by the close correspondence between a phase conjugate mirror and the interface between a pair of matched right-handed material (RHM) and left-handed material (LHM) media. Using this method, we show that a symmetric conducting shell embedded in the interface junction of an isotropic RHM layer and an isotropic negative index or LHM layer can serve as a limited cloaking structure. The proposed structure presents an anomalously small scattering cross-section to an incident propagating electromagnetic (EM) field. The interior of the shell can be used to shield small objects from interrogation. We report the results of 2D finite-element-method (FEM) simulations that were performed to verify the principle, and discuss the limitations of the proposed structure
Mirror, mirror on the wall, tell me, is the error small?
Do object part localization methods produce bilaterally symmetric results on
mirror images? Surprisingly not, even though state of the art methods augment
the training set with mirrored images. In this paper we take a closer look into
this issue. We first introduce the concept of mirrorability as the ability of a
model to produce symmetric results in mirrored images and introduce a
corresponding measure, namely the \textit{mirror error} that is defined as the
difference between the detection result on an image and the mirror of the
detection result on its mirror image. We evaluate the mirrorability of several
state of the art algorithms in two of the most intensively studied problems,
namely human pose estimation and face alignment. Our experiments lead to
several interesting findings: 1) Surprisingly, most of state of the art methods
struggle to preserve the mirror symmetry, despite the fact that they do have
very similar overall performance on the original and mirror images; 2) the low
mirrorability is not caused by training or testing sample bias - all algorithms
are trained on both the original images and their mirrored versions; 3) the
mirror error is strongly correlated to the localization/alignment error (with
correlation coefficients around 0.7). Since the mirror error is calculated
without knowledge of the ground truth, we show two interesting applications -
in the first it is used to guide the selection of difficult samples and in the
second to give feedback in a popular Cascaded Pose Regression method for face
alignment.Comment: 8 pages, 9 figure
Harmonically matched grating-based full-field quantitative high-resolution phase microscope for observing dynamics of transparent biological samples
We have developed a full-field high resolution quantitative phase imaging technique for observing dynamics of transparent biological samples. By using a harmonically matched diffraction grating pair (600 and 1200
lines/mm), we were able to obtain non-trivial phase difference (other than 0° or 180°) between the output ports of the gratings. Improving upon our previous design, our current system mitigates astigmatism artifacts and is
capable of high resolution imaging. This system also employs an improved phase extraction algorithm. The system has a lateral resolution of 1.6 μm and a phase sensitivity of 62 mrad. We employed the system to acquire high resolution phase images of onion skin cells and a phase movie of amoeba
proteus in motion
- …
