536 research outputs found
Flexural Behavior of RC Beams Under Combined Effects of Acid–Salt Mist and Carbon Dioxide
The coupling effects of hydrochloric acid mist, carbon dioxide, and salt mist rich in Cl– and SO42– on the degradation of reinforcement concrete (RC) beams were researched with the simulation of colliery ground environment (CGE) and experimental investigation. The results indicated that carbonation of concrete and corrosion of rebar increased slowly as the maximum width of crack became \u3c0.5 mm. Meanwhile, the flexural carrying capacity of the deteriorated beam decreased slightly, while the concrete strength got a small increase first and a large decrease of more than 20% quickly. As the width of crack exceeded 0.5 mm, each target changed rapidly except the carbonation depth. Because of the interaction of deteriorated concrete and corroded rebar, the crack width, and flexural behavior of the beams have discrete correlation with the corrosion of rebar. The failure mode of beams changed from the crushing of compression concrete to the yielding of rebar
Learning to Decompose Visual Features with Latent Textual Prompts
Recent advances in pre-training vision-language models like CLIP have shown
great potential in learning transferable visual representations. Nonetheless,
for downstream inference, CLIP-like models suffer from either 1) degraded
accuracy and robustness in the case of inaccurate text descriptions during
retrieval-based inference (the challenge for zero-shot protocol); or 2)
breaking the well-established vision-language alignment (the challenge for
linear probing). To address them, we propose Decomposed Feature Prompting
(DeFo). DeFo leverages a flexible number of learnable embeddings as textual
input while maintaining the vision-language dual-model architecture, which
enables the model to learn decomposed visual features with the help of
feature-level textual prompts. We further use an additional linear layer to
perform classification, allowing a scalable size of language inputs. Our
empirical study shows DeFo's significance in improving the vision-language
models. For example, DeFo obtains 73.2% test accuracy on ImageNet with a
ResNet-50 backbone without tuning any pretrained weights of both the vision and
language encoder, outperforming zero-shot CLIP by a large margin of 15.0%, and
outperforming state-of-the-art vision-language prompt tuning method by 7.6%
Quantum Algorithms for Quantum Molecular Systems: A Survey
Solving quantum molecular systems presents a significant challenge for classical computation. The advent of early fault‐tolerant quantum computing devices offers a promising avenue to address these challenges, leveraging advanced quantum algorithms with reduced hardware requirements. This review surveys the latest developments in quantum computing algorithms for quantum molecular systems in the fault‐tolerant quantum computing era, covering encoding schemes, advanced Hamiltonian simulation techniques, and ground‐state energy estimation methods. We highlight recent progress in overcoming practical barriers, such as reducing circuit depth and minimizing the use of ancillary qubits. Special attention is given to the potential quantum advantages achievable through these algorithms, as well as the limitations imposed by dequantization and classical simulation techniques. The review concludes with a discussion of future directions, emphasizing the need for optimized algorithms and experimental validation to bridge the gap between theoretical developments and practical implementation for quantum molecular systems
The CDEX-1 1 kg Point-Contact Germanium Detector for Low Mass Dark Matter Searches
The CDEX Collaboration has been established for direct detection of light
dark matter particles, using ultra-low energy threshold p-type point-contact
germanium detectors, in China JinPing underground Laboratory (CJPL). The first
1 kg point-contact germanium detector with a sub-keV energy threshold has been
tested in a passive shielding system located in CJPL. The outputs from both the
point-contact p+ electrode and the outside n+ electrode make it possible to
scan the lower energy range of less than 1 keV and at the same time to detect
the higher energy range up to 3 MeV. The outputs from both p+ and n+ electrode
may also provide a more powerful method for signal discrimination for dark
matter experiment. Some key parameters, including energy resolution, dead time,
decay times of internal X-rays, and system stability, have been tested and
measured. The results show that the 1 kg point-contact germanium detector,
together with its shielding system and electronics, can run smoothly with good
performances. This detector system will be deployed for dark matter search
experiments.Comment: 6 pages, 8 figure
JUNO Conceptual Design Report
The Jiangmen Underground Neutrino Observatory (JUNO) is proposed to determine
the neutrino mass hierarchy using an underground liquid scintillator detector.
It is located 53 km away from both Yangjiang and Taishan Nuclear Power Plants
in Guangdong, China. The experimental hall, spanning more than 50 meters, is
under a granite mountain of over 700 m overburden. Within six years of running,
the detection of reactor antineutrinos can resolve the neutrino mass hierarchy
at a confidence level of 3-4, and determine neutrino oscillation
parameters , , and to
an accuracy of better than 1%. The JUNO detector can be also used to study
terrestrial and extra-terrestrial neutrinos and new physics beyond the Standard
Model. The central detector contains 20,000 tons liquid scintillator with an
acrylic sphere of 35 m in diameter. 17,000 508-mm diameter PMTs with high
quantum efficiency provide 75% optical coverage. The current choice of
the liquid scintillator is: linear alkyl benzene (LAB) as the solvent, plus PPO
as the scintillation fluor and a wavelength-shifter (Bis-MSB). The number of
detected photoelectrons per MeV is larger than 1,100 and the energy resolution
is expected to be 3% at 1 MeV. The calibration system is designed to deploy
multiple sources to cover the entire energy range of reactor antineutrinos, and
to achieve a full-volume position coverage inside the detector. The veto system
is used for muon detection, muon induced background study and reduction. It
consists of a Water Cherenkov detector and a Top Tracker system. The readout
system, the detector control system and the offline system insure efficient and
stable data acquisition and processing.Comment: 328 pages, 211 figure
Study of ‘Fingerprints’ for Green Tea from Different Planting Areas in Eastern China
Green tea is one of the main teas in China, which is unfermented and retains more natural substances of fresh tea leaves. This is the preliminary study of application of ‘fingerprints’ based on differences in component composition of green tea. Five green teas from different areas in eastern China are analyzed, which are processed by microwave-assisted solvent (ethanol) extraction method to obtain tea polyphenols, flavonoids, polysaccharides, pigments (thearubigins, theaflavins, theabrownins). The results show that the component composition of five green teas are varied from each other; based on these contents varieties, we have constructed a ‘fingerprint’ and applied linear discriminant analysis (LDA) and hierarchical cluster analysis (HCA) to assist in the identification of these five green teas. This method does not require large, expensive instruments (such as high performance liquid chromatograph, gas chromatograph, mass spectrometer, etc.), and is easy to use, which provides a new avenue for the identification of tea. 
Evidence for at center-of-mass energies from 4.009 to 4.360 GeV
Using data samples collected at center-of-mass energies of =
4.009, 4.230, 4.260, and 4.360 GeV with the BESIII detector operating at the
BEPCII collider, we perform a search for the process
and find evidence for and
with statistical significances of 3.0 and
3.4, respectively. The Born cross sections
, as well as their upper limits at the
90% confidence level are determined at each center-of-mass energy.Comment: 8 pages, 7 figures, 3 table
Search for the Lepton Flavor Violation Process at BESIII
We search for the lepton-flavor-violating decay of the into an
electron and a muon using events
collected with the BESIII detector at the BEPCII collider. Four candidate
events are found in the signal region, consistent with background expectations.
An upper limit on the branching fraction of (90% C.L.) is obtained
Precision measurement of the decay branching fractions
Using 482 pb of data taken at GeV, we measure the
branching fractions of the decays of into and
to be \BR(D^{*0} \to D^0\pi^0)=(65.5\pm 0.8\pm 0.5)% and \BR(D^{*0} \to
D^0\gamma)=(34.5\pm 0.8\pm 0.5)% respectively, by assuming that the
decays only into these two modes. The ratio of the two branching fractions is
\BR(D^{*0} \to D^0\pi^0)/\BR(D^{*0} \to D^0\gamma) =1.90\pm 0.07\pm 0.05,
which is independent of the assumption made above. The first uncertainties are
statistical and the second ones systematic. The precision is improved by a
factor of three compared to the present world average values
- …
