74 research outputs found

    Fluorescence-based analyser as a rapid tool for determining soluble protein content in dairy ingredients and infant milk formula

    Get PDF
    peer-reviewedAbstract: Milk protein, in particular native whey protein, is of interest to dairy manufacturers as a measure of functional and nutritional quality. However, quantification of soluble whey protein (SP) is time consuming; giving rise to the need to develop rapid, accurate, and portable at-line process analytical technology. In this study, the performance of a fluorescence-based analyser(F) (Amaltheys II, Spectralys Innovations, France) was evaluated for quantification of SPF and whey protein nitrogen index (WPNI)F in skim milk, whey protein concentrate and infant formula powders. Rehydration of powders prior to analysis was a key factor for ensuring repeatability and reproducibility. A comparison of the analyser with reference methods for SPF and WPNIF resulted in coefficient of determination (R2) > 0.993 for both SPKjeldahl method and WPNIGEA. The results show the fluorescence-based analyser to be rapid, compact, and accurate device, suited for providing reliable support to dairy ingredient and infant formula manufacturers. Industrial relevance: The fluorescence based analysis investigated in this article is suitable for application in the dairy industry where it can be used as a rapid, at-line PAT tool for both liquid and powder samples. The technology has the potential to replace well-established methods for measurement of soluble protein. The main benefit to industry is the ability to respond more rapidly to variations in soluble protein without compromising on the accuracy associated with more time consuming methods

    Sound fruit

    Get PDF
    A collection of original poems.Bachelor of Art

    Mitigation of large-scale organic waste damage incorporating a demonstration of a closed loop conversion of poultry waste to energy at the point of source (2000-LS-1-M2) Final Report

    Get PDF
    peer-reviewedThe increase in the world population and urbanisation, have changed the way the world produces food. As the demand for cheap and readily available food in the developed world increases, high-density, intensive farming practices have replaced subsistence farming to allow for the mass production of food. An unavoidable consequence of these farming\ud practices is the generation of significant quantities of organic waste

    Utilisation of poultry litter as an energy feedstock

    Get PDF
    peer-reviewedThis paper examines poultry litter (PL) as a resource in fuel quality terms and illustrates how the small scale application of fluidised bed technology solves both energy and waste problems, while producing a nutrient rich ash. PL was found to have a higher heating value (HHV) of 18 GJ t−1 on a dry basis (db). On an as received basis (ar), it had an ash mass fraction of 9% and the elemental phosphorous content of the ash was 110 g kg−1. The resultant mineral matter can be utilised as a nutrient substitute for mineral fertiliser

    Biosecurity on poultry farms from on-farm fluidized bed combustion and energy recovery from poultry litter

    Get PDF
    peer-reviewedThe spreading of poultry litter in recent years has led to a serious increase in levels of eutrophication, nitrate leaching, high Biological Oxygen Demand (BOD), ammonia toxicity, high chlorine concentrations and pathogen contamination. The review presented here details the optimum standards that should be met when storing litter for On-Farm Fluidized Bed Combustion. Storage conditions are paramount to a fuel combusting to its highest possible potential. Safety measures such as the prevention of leaching and spontaneous combustion must be adhered to, so too should the prevention and containment of possible diseases and pathogens to minimize the effects of contamination

    Rapid Electrochemical Detection of New Delhi Metallo-beta-lactamase Genes To Enable Point-of-Care Testing of Carbapenem-Resistant Enterobacteriaceae

    Get PDF
    The alarming rate at which antibiotic resistance is occurring in human pathogens causes a pressing need for improved diagnostic technologies aimed at rapid detection and point-of-care testing to support quick decision making regarding antibiotic therapy and patient management. Here, we report the successful development of an electrochemical biosensor to detect <i>bla</i><sub><i>NDM</i></sub>, the gene encoding the emerging New Delhi metallo-beta-lactamase, using label-free electrochemical impedance spectroscopy (EIS). The presence of this gene is of critical concern because organisms harboring <i>bla</i><sub><i>NDM</i></sub> tend to be multiresistant, leaving very few treatment options. For the EIS assay, we used a <i>bla</i><sub><i>NDM</i></sub>-specific PNA probe that was designed by applying a new approach that combines <i>in silico</i> probe design and fluorescence-based DNA microarray validation with electrochemical testing on gold screen-printed electrodes. The assay was successfully demonstrated for synthetic targets (LOD = 10 nM), PCR products (LOD = 100 pM), and direct, amplification-free detection from a <i>bla</i><sub><i>NDM</i></sub>-harboring plasmid. The biosensor’s specificity, preanalytical requirements, and performance under ambient conditions were demonstrated and successfully proved its suitability for further point-of-care test development

    Ash agglomeration and deposition during combustion of poultry litter in a bubbling fluidized-bed combustor

    Get PDF
    peer-reviewedn this study, we have characterized the ash resulting from fluidized bed combustion of poultry litter as being dominated by a coarse fraction of crystalline ash composed of alkali-Ca-phosphates and a fine fraction of particulate K2SO4 and KCl. Bed agglomeration was found to be coating-induced with two distinct layers present. The inner layer (0.05–0.09 mm thick) was formed due to the reaction of gaseous potassium with the sand (SiO2) surface forming K-silicates with low melting points. Further chemical reaction on the surface of the bed material strengthened the coating forming a molten glassy phase. The outer layer was composed of loosely bound, fine particulate ash originating from the char. Thermodynamic equilibrium calculations showed slag formation in the combustion zone is highly temperature-dependent, with slag formation predicted to increase from 1.8 kg at 600 °C to 7.35 kg at 1000 °C per hour of operation (5.21 kg of ash). Of this slag phase, SiO2 and K2O were the dominant phases, accounting for almost 95%, highlighting the role of K-silicates in initiating bed agglomeration. The remaining 5% was predicted to consist mainly of Al2O3, K2SO4, and Na2O. Deposition downstream in the low-temperature regions was found to occur mostly through the vaporization–condensation mechanism, with equilibrium decreasing significantly with decreasing temperatures. The dominant alkali chloride-containing gas predicted to form in the combustion zone was KCl, which corresponds with the high KCl content in the fine baghouse ash

    Electrochemical detection of pathogenic bacteria - recent strategies, advances and challenges

    Get PDF
    Bacterial infections represent one of the leading causes of mortality worldwide, nevertheless the design and development of rapid, cost‐efficient and reliable detection methods for pathogens remains challenging. In recent years, electrochemical sensing methods have gained increasing attention for the detection of pathogenic bacteria, due to their increasingly competitive sensitivity. However, combining sensitivity with cost efficiency, high selectivity and a facile working procedure in a portable device is difficult. The presented review provides a summary of biosensing strategies for bacteria, published since 2015, by covering significant achievements towards custom‐designed portable point‐of‐care devices. Herein, the direct chemical recognition of bacteria via enzyme activity or secretion products, as well as their detection at various electrode surfaces and materials, such as nanomaterials, indium tin oxide or paper‐based immunosensors, is discussed. Furthermore, newly established hyphenated sensing principles, incorporated into lab‐on‐a‐chip and microfluidic devices, are presented and remaining technical challenges and limitations are considered

    Genotypic assessment of Drug Resistant Tuberculosis in Baghdad and other Iraqi provinces using low-cost and density (LCD) DNA microarrays

    Get PDF
    We report on a molecular investigation carried out to ascertain the prevalence of drug resistant TB and the specific gene mutations responsible for resistance to rifampicin (RIF) and/or isoniazid (INH) in Iraq. One hundred and ten clinical isolates from category II TB cases from Baghdad (58%) and several Iraqi provinces (42%) were analyzed using colorimetric, low-cost and density (LCD) microarrays (MYCODirect and MYCOResist LCD-array kits, Chipron GmbH, Germany) to identify the point mutations responsible for resistance in Mycobacterium tuberculosis isolates. Seventy-six patients (69.1%) had resistant strains, of which 40 (36%) were MDRTB. Where mono-resistance was identified, it was found to be predominantly to RIF (83%). The most common mutations were rpoB S531L (50%), inhA C15T (25%), and katG S315T (15%). The most common MDRTB genotypes were rpoB S531L with inhA C15T (60%) and rpoB S531L with katG S315T (20%). Where phenotypic analysis of clinical isolates was also performed, genotypic data were found to show excellent correlation with phenotypic results. Correlation was found between the MYCOResist LCD-array and GenoType MTBDRplus for detection of resistance to RIF. Our study shows MDRTB in 36% of category II TB cases in Baghdad and surrounding Iraqi provinces which reflects World Health Organization (WHO) findings based on phenotypic studies. Diagnosis of TB and MDR-TB using culture-based tests are a significant impediment to global TB control. The LCD arrays investigated herein are easy to use, sensitive and specific molecular tools for TB resistance profiling in resource-limited laboratory settings.<br/

    Carbon Screen-Printed Electrodes on Ceramic Substrates for Label-Free Molecular Detection of Antibiotic Resistance

    Get PDF
    The growing threat posed by antimicrobial resistance on the healthcare and economic well-being of mankind is pushing the need to develop novel and improved diagnostic platforms for its rapid detection at point of care, facilitating better patient management strategies during antibiotic therapy. In this paper, we present the manufacturing and characterisation of a low-cost carbon screen-printed electrochemical sensor on a ceramic substrate. Using label-free electrochemical impedance spectroscopy, the sensor is demonstrated for the detection of blaNDM, which is one of the main antimicrobial resistance factors in carbapenem-resistant Enterobacteriaceae. The electrochemical performance of the newly fabricated sensor was initially investigated in relation to the function of its underlying composite materials, evaluating the choice of carbon and dielectric pastes by characterising properties like surface roughness, wetting and susceptibility of unspecific DNA binding. Subsequently, the sensor was used in an electrochemical impedance spectroscopy assay for the sensitive and specific detection of synthetic blaNDM targets achieving a detection limit of 200 nM. The sensor properties and performance demonstrated in this study proved the suitability of the new electrode materials and manufacturing for further point-of-care test development as an inexpensive and effective alternative to gold electrodes sensor
    corecore