9,834 research outputs found
Bond breaking with auxiliary-field quantum Monte Carlo
Bond stretching mimics different levels of electron correlation and provides
a challenging testbed for approximate many-body computational methods. Using
the recently developed phaseless auxiliary-field quantum Monte Carlo (AF QMC)
method, we examine bond stretching in the well-studied molecules BH and N,
and in the H chain. To control the sign/phase problem, the phaseless AF
QMC method constrains the paths in the auxiliary-field path integrals with an
approximate phase condition that depends on a trial wave function. With single
Slater determinants from unrestricted Hartree-Fock (UHF) as trial wave
function, the phaseless AF QMC method generally gives better overall accuracy
and a more uniform behavior than the coupled cluster CCSD(T) method in mapping
the potential-energy curve. In both BH and N, we also study the use of
multiple-determinant trial wave functions from multi-configuration
self-consistent-field (MCSCF) calculations. The increase in computational cost
versus the gain in statistical and systematic accuracy are examined. With such
trial wave functions, excellent results are obtained across the entire region
between equilibrium and the dissociation limit.Comment: 8 pages, 3 figures and 3 tables. Submitted to JC
Eliminating spin contamination in auxiliary-field quantum Monte Carlo: realistic potential energy curve of F2
The use of an approximate reference state wave function |Phi_r> in electronic
many-body methods can break the spin symmetry of Born-Oppenheimer
spin-independent Hamiltonians. This can result in significant errors,
especially when bonds are stretched or broken. A simple spin-projection method
is introduced for auxiliary-field quantum Monte Carlo (AFQMC) calculations,
which yields spin-contamination-free results, even with a spin-contaminated
|Phi_r>. The method is applied to the difficult F2 molecule, which is unbound
within unrestricted Hartree-Fock (UHF). With a UHF |Phi_r>, spin contamination
causes large systematic errors and long equilibration times in AFQMC in the
intermediate, bond-breaking region. The spin-projection method eliminates these
problems, and delivers an accurate potential energy curve from equilibrium to
the dissociation limit using the UHF |Phi_r>. Realistic potential energy curves
are obtained with a cc-pVQZ basis. The calculated spectroscopic constants are
in excellent agreement with experiment.Comment: 8 pages, 6 figures, submitted to J. Chem. Phy
Auxiliary-field quantum Monte Carlo study of first- and second-row post-d elements
A series of calculations for the first- and second-row post-d elements (Ga-Br
and In-I) are presented using the phaseless auxiliary-field quantum Monte Carlo
(AF QMC) method. This method is formulated in a Hilbert space defined by any
chosen one-particle basis, and maps the many-body problem into a linear
combination of independent-particle solutions with external auxiliary fields.
The phase/sign problem is handled approximately by the phaseless formalism
using a trial wave function, which in our calculations was chosen to be the
Hartree-Fock solution. We used the consistent correlated basis sets of Peterson
and coworkers, which employ a small core relativistic pseudopotential. The AF
QMC results are compared with experiment and with those from density-functional
(GGA and B3LYP) and coupled-cluster CCSD(T) calculations. The AF QMC total
energies agree with CCSD(T) to within a few milli-hartrees across the systems
and over several basis sets. The calculated atomic electron affinities,
ionization energies, and spectroscopic properties of dimers are, at large basis
sets, in excellent agreement with experiment.Comment: 10 pages, 2 figures. To be published in Journal of Chemical Physic
Auxiliary-field quantum Monte Carlo calculations of molecular systems with a Gaussian basis
We extend the recently introduced phaseless auxiliary-field quantum Monte
Carlo (QMC) approach to any single-particle basis, and apply it to molecular
systems with Gaussian basis sets. QMC methods in general scale favorably with
system size, as a low power. A QMC approach with auxiliary fields in principle
allows an exact solution of the Schrodinger equation in the chosen basis.
However, the well-known sign/phase problem causes the statistical noise to
increase exponentially. The phaseless method controls this problem by
constraining the paths in the auxiliary-field path integrals with an
approximate phase condition that depends on a trial wave function. In the
present calculations, the trial wave function is a single Slater determinant
from a Hartree-Fock calculation. The calculated all-electron total energies
show typical systematic errors of no more than a few milli-Hartrees compared to
exact results. At equilibrium geometries in the molecules we studied, this
accuracy is roughly comparable to that of coupled-cluster with single and
double excitations and with non-iterative triples, CCSD(T). For stretched bonds
in HO, our method exhibits better overall accuracy and a more uniform
behavior than CCSD(T).Comment: 11 pages, 5 figures. submitted to JC
Approximation Algorithms for Generalized MST and TSP in Grid Clusters
We consider a special case of the generalized minimum spanning tree problem
(GMST) and the generalized travelling salesman problem (GTSP) where we are
given a set of points inside the integer grid (in Euclidean plane) where each
grid cell is . In the MST version of the problem, the goal is to
find a minimum tree that contains exactly one point from each non-empty grid
cell (cluster). Similarly, in the TSP version of the problem, the goal is to
find a minimum weight cycle containing one point from each non-empty grid cell.
We give a and -approximation
algorithm for these two problems in the described setting, respectively.
Our motivation is based on the problem posed in [7] for a constant
approximation algorithm. The authors designed a PTAS for the more special case
of the GMST where non-empty cells are connected end dense enough. However,
their algorithm heavily relies on this connectivity restriction and is
unpractical. Our results develop the topic further
A concerted and multi-criterion approach for helping to choose a Structure- Foundation system of building
The research of the best building design requires a concerted design approach of both structure and foundation. Our work is an application of this approach. Our objective is also to create an interactive tool, which will be able to define, at the early design stages, the orientations of structure and foundation systems that satisfy as well as possible the client and the architect. If the concerns of these two actors are primarily technical and economical, they also wish to apprehend the environmental and social dimensions of their projects. Thus, this approach bases on alternative studies and on a multi-criterion analysis. In this paper, we present the context of our work, the problem formulation, which allows a concerted design of Structure and Foundation systems and the feasible solutions identifying process
Fine particulate matter pollution and risk of community-acquired sepsis
While air pollution has been associated with health complications, its effect on sepsis risk is unknown. We examined the association between fine particulate matter (PM2.5) air pollution and risk of sepsis hospitalization. We analyzed data from the 30,239 community-dwelling adults in the Reasons for Geographic and Racial Differences in Stroke (REGARDS) cohort linked with satellite-derived measures of PM2.5 data. We defined sepsis as a hospital admission for a serious infection with ≥2 systemic inflammatory response (SIRS) criteria. We performed incidence density sampling to match sepsis cases with 4 controls by age (±5 years), sex, and race. For each matched group we calculated mean daily PM2.5 exposures for short-term (30-day) and long-term (one-year) periods preceding the sepsis event. We used conditional logistic regression to evaluate the association between PM2.5 exposure and sepsis, adjusting for education, income, region, temperature, urbanicity, tobacco and alcohol use, and medical conditions. We matched 1386 sepsis cases with 5544 non-sepsis controls. Mean 30-day PM2.5 exposure levels (Cases 12.44 vs. Controls 12.34 µg/m3; p = 0.28) and mean one-year PM2.5 exposure levels (Cases 12.53 vs. Controls 12.50 µg/m3; p = 0.66) were similar between cases and controls. In adjusted models, there were no associations between 30-day PM2.5 exposure levels and sepsis (4th vs. 1st quartiles OR: 1.06, 95% CI: 0.85–1.32). Similarly, there were no associations between one-year PM2.5 exposure levels and sepsis risk (4th vs. 1st quartiles OR: 0.96, 95% CI: 0.78–1.18). In the REGARDS cohort, PM2.5 air pollution exposure was not associated with risk of sepsis
Critical comparison of intravenous injection of TiO2 nanoparticles with waterborne and dietary exposures concludes minimal environmentally-relevant toxicity in juvenile rainbow trout Oncorhynchus mykiss.
A critical comparison of studies that have investigated tissue accumulation and toxicity of TiO2-NPs in fish is necessary to resolve inconsistencies. The present study used identical TiO2-NPs, toxicological endpoints, and fish (juvenile rainbow trout Oncorhynchus mykiss) as previous studies that investigated waterborne and dietary toxicity of TiO2-NPs, and conducted a critical comparison of results after intravenous caudal-vein injection of 50 μg of TiO2-NPs and bulk TiO2. Injected TiO2-NPs accumulated only in kidney (94% of measured Ti) and to a lesser extent in spleen; and injected bulk TiO2 was found only in kidney. No toxicity of TiO2 was observed in kidney, spleen, or other tissues. Critical comparison of these data with previous studies indicates that dietary and waterborne exposures to TiO2-NPs do not lead to Ti accumulation in internal tissues, and previous reports of minor toxicity are inconsistent or attributable to respiratory distress resulting from gill occlusion during waterborne exposure
MH-60 Seahawk / MQ-8 Fire Scout interoperability
Approved for public release; distribution is unlimitedAs part of a Naval Postgraduate School's capstone project in Systems Engineering, a project team from Cohort 311-0911 performed a Systems Engineering analysis. This Project focused on defining alternatives for enhanced Anti-Surface Warfare (ASUW) mission effectiveness through increased interoperability and integration for the Fire Scout Unmanned Air Vehicle and Seahawk helicopter. Specifically, the Project explored the available trade space for enhancing communications back to the ship for analysis and decision-making. Modeling and Simulation (MandS) was used to assess the impact of enhanced communication on specific Key performance Parameters (KPPs) and Measures of Effectiveness (MOEs) associated with the ASUW mission. Once the trade space was defined, alternatives were analyzed and a recommendation provided that supports near-, mid-, and long-term mission enhancement
Changes in brain white matter structure are associated with urine proteins in urologic chronic pelvic pain syndrome (UCPPS): A MAPP Network study
- …
