1,134 research outputs found

    A short proof of the simple continued fraction expansion of e

    Full text link
    This note presents an especially short and direct variant of Hermite's proof of the simple continued fraction expansion e = [2,1,2,1,1,4,1,1,6,...] and explains some of the motivation behind it.Comment: 6 pages; only change from published version is that "Riccati" is now spelled correctl

    Order and disorder in energy minimization

    Full text link
    How can we understand the origins of highly symmetrical objects? One way is to characterize them as the solutions of natural optimization problems from discrete geometry or physics. In this paper, we explore how to prove that exceptional objects, such as regular polytopes or the E_8 root system, are optimal solutions to packing and potential energy minimization problems.Comment: 28 page

    Counterintuitive ground states in soft-core models

    Full text link
    It is well known that statistical mechanics systems exhibit subtle behavior in high dimensions. In this paper, we show that certain natural soft-core models, such as the Gaussian core model, have unexpectedly complex ground states even in relatively low dimensions. Specifically, we disprove a conjecture of Torquato and Stillinger, who predicted that dilute ground states of the Gaussian core model in dimensions 2 through 8 would be Bravais lattices. We show that in dimensions 5 and 7, there are in fact lower-energy non-Bravais lattices. (The nearest three-dimensional analog is the hexagonal close-packing, but it has higher energy than the face-centered cubic lattice.) We believe these phenomena are in fact quite widespread, and we relate them to decorrelation in high dimensions.Comment: 7 pages, 4 figures, appeared in Physical Review E (http://pre.aps.org/

    New upper bounds on sphere packings I

    Get PDF
    We develop an analogue for sphere packing of the linear programming bounds for error-correcting codes, and use it to prove upper bounds for the density of sphere packings, which are the best bounds known at least for dimensions 4 through 36. We conjecture that our approach can be used to solve the sphere packing problem in dimensions 8 and 24.Comment: 26 pages, 1 figur

    Algorithmic design of self-assembling structures

    Full text link
    We study inverse statistical mechanics: how can one design a potential function so as to produce a specified ground state? In this paper, we show that unexpectedly simple potential functions suffice for certain symmetrical configurations, and we apply techniques from coding and information theory to provide mathematical proof that the ground state has been achieved. These potential functions are required to be decreasing and convex, which rules out the use of potential wells. Furthermore, we give an algorithm for constructing a potential function with a desired ground state.Comment: 8 pages, 5 figure

    Sphere packing bounds via spherical codes

    Full text link
    The sphere packing problem asks for the greatest density of a packing of congruent balls in Euclidean space. The current best upper bound in all sufficiently high dimensions is due to Kabatiansky and Levenshtein in 1978. We revisit their argument and improve their bound by a constant factor using a simple geometric argument, and we extend the argument to packings in hyperbolic space, for which it gives an exponential improvement over the previously known bounds. Additionally, we show that the Cohn-Elkies linear programming bound is always at least as strong as the Kabatiansky-Levenshtein bound; this result is analogous to Rodemich's theorem in coding theory. Finally, we develop hyperbolic linear programming bounds and prove the analogue of Rodemich's theorem there as well.Comment: 30 pages, 2 figure
    corecore