10,154 research outputs found

    A Unified Monte Carlo Treatment of Gas-Grain Chemistry for Large Reaction Networks. II. A Multiphase Gas-Surface-Layered Bulk Model

    Full text link
    The observed gas-phase molecular inventory of hot cores is believed to be significantly impacted by the products of chemistry in interstellar ices. In this study, we report the construction of a full macroscopic Monte Carlo model of both the gas-phase chemistry and the chemistry occurring in the icy mantles of interstellar grains. Our model treats icy grain mantles in a layer-by-layer manner, which incorporates laboratory data on ice desorption correctly. The ice treatment includes a distinction between a reactive ice surface and an inert bulk. The treatment also distinguishes between zeroth and first order desorption, and includes the entrapment of volatile species in more refractory ice mantles. We apply the model to the investigation of the chemistry in hot cores, in which a thick ice mantle built up during the previous cold phase of protostellar evolution undergoes surface reactions and is eventually evaporated. For the first time, the impact of a detailed multilayer approach to grain mantle formation on the warm-up chemistry is explored. The use of a multilayer ice structure has a mixed impact on the abundances of organic species formed during the warm-up phase. For example, the abundance of gaseous HCOOCH3 is lower in the multilayer model than in previous grain models that do not distinguish between layers (so-called "two phase" models). Other gaseous organic species formed in the warm-up phase are affected slightly. Finally, we find that the entrapment of volatile species in water ice can explain the two-jump behavior of H2CO previously found in observations of protostars.Comment: 50 pages, 14 figures, accepted to Ap

    The Rotation of Young Low-Mass Stars and Brown Dwarfs

    Full text link
    We review the current state of our knowledge concerning the rotation and angular momentum evolution of young stellar objects and brown dwarfs from a primarily observational view point. Periods are typically accurate to 1% and available for about 1700 stars and 30 brown dwarfs in young clusters. Discussion of angular momentum evolution also requires knowledge of stellar radii, which are poorly known for pre-main sequence stars. It is clear that rotation rates at a given age depend strongly on mass; higher mass stars (0.4-1.2 M_\odot) have longer periods than lower mass stars and brown dwarfs. On the other hand, specific angular momentum is approximately independent of mass for low mass pre-main sequence stars and young brown dwarfs. A spread of about a factor of 30 is seen at any given mass and age. The evolution of rotation of solar-like stars during the first 100 Myr is discussed. A broad, bimodal distribution exists at the earliest observable phases (\sim1 Myr) for stars more massive than 0.4 M_\odot. The rapid rotators (50-60% of the sample) evolve to the ZAMS with little or no angular momentum loss. The slow rotators continue to lose substantial amounts of angular momentum for up to 5 Myr, creating the even broader bimodal distribution characteristic of 30-120 Myr old clusters. Accretion disk signatures are more prevalent among slowly rotating PMS stars, indicating a connection between accretion and rotation. Disks appear to influence rotation for, at most, \sim5 Myr, and considerably less than that for the majority of stars. If the dense clusters studied so far are an accurate guide, then the typical solar-like star may have only \sim1 Myr for this task. It appears that both disk interactions and stellar winds are less efficient at braking these objects.Comment: Review chapter for Protostars and Planets V. 15 page and 8 figure

    Laboratory millimeter and submillimeter spectrum of HOC^+

    Get PDF
    The J = 1→2, 2→3, and 3→4 rotational transitions of the molecular ion HOC^+ have been measured in the laboratory at frequencies from 178 to 358 GHz. The data should permit astronomers to confirm the recent possible sighting of the J = 1→0 transition of HOC^+ in Sgr B2 at 89.5 GHz

    The Mass Dependence of Stellar Rotation in the Orion Nebula Cluster

    Get PDF
    We have determined new rotation periods for 404 stars in the Orion Nebula Cluster using the Wide Field Imager attached to the MPG/ESO 2.2 m telescope on La Silla, Chile. Mass estimates are available for 335 of these and most have M < 0.3 M_sun. We confirm the existence of a bimodal period distribution for the higher mass stars in our sample and show that the median rotation rate decreases with increasing mass for stars in the range 0.1 < M <0.4 M_sun. While the spread in angular momentum (J) at any given mass is more than a factor of 10, the majority of lower mass stars in the ONC rotate at rates approaching 30% of their critical break-up velocity, as opposed to 5-10% for solar-like stars. This is a consequence of both a small increase in observed specific angular momentum (j=J/M) and a larger decrease in the critical value of j with decreasing mass. Perhaps the most striking fact, however, is that j varies by so little - less than a factor of two - over the interval 0.1-1.0 M_sun. The distribution of rotation rates with mass in the ONC (age ~ 1 My) is similar in nature to what is found in the Pleiades (age ~ 100 My). These observations provide a significant new guide and test for models of stellar angular momentum evolution during the proto-stellar and pre-main sequence phases.Comment: 11 pages, 3 figure
    corecore