1,394 research outputs found
Effect of stem age on the response of stem diameter variations to plant water status in tomato
Plant water status plays a major role in glasshouse cultivation of tomato (Solanum lycopersicum L.). New climate control technologies alter the glasshouse climate and make it less dependent on solar radiation. However, irrigation strategies are still often based on solar radiation sums. In order to maintain a good plant water status, it is interesting to use plant-based methods such as monitoring sap flow (F) or stem diameter variations (SDV). Though SDV give important information about plant water status, an unambiguous interpretation might be difficult because other factors such as stem age, fruit load and sugar content of the stem also affect SDV. In this study, an analysis of the effect of stem age on the response of SDV to water status was performed by calibration of a mechanistic flow and storage model. This allowed us to determine how parameter values changed across the growing season. Tissue extensibility decreased over the growing season resulting in a lower growth rate potential, whereas daily cycles of shrinking and swelling of the stem became more pronounced towards the end of the growing season. Parameters were then adapted to time-dependent variables and implemented in the model, allowing long term simulation and interpretation of SDV. Sensitivity analysis showed that model predictions were very sensitive to initial sucrose content of the phloem tissue and the parameters related to plastic growth
A decision support system for tomato growers based on plant responses and energy consumption
The importance of plant water status for a good production and quality of tomato fruits (Solanum lycopersicum L.) has been emphasized by many authors. Currently, different new energy-saving technologies and growing strategies are under investigation to cope with the increasing fossil fuel prices. However, these technologies and growing strategies typically alter the greenhouse climate, thereby affecting the plants' response. Hence, the question arises how to adapt the microclimate to reduce the energy consumption of greenhouse tomato cultivation without compromising fruit yield or quality. Nowadays, the use of plant-based methods to steer the climate is of high interest and it was demonstrated that monitoring of stem diameter variations and fruit growth provides crucial information on both the plant water and carbon status. However, interpretation of these data is not straightforward and, hence, mechanistic modelling is necessary for an unambiguous interpretation of the dynamic plant response. During a 4-year research period, we investigated the response of different plant processes of tomato to dynamic microclimatic greenhouse conditions. The final aim was to develop a decision support system that helps growers to find an optimal balance between energy consumption, plant response and fruit yield. To this end, an integrated plant model, including stem, leaves, roots and fruits, was developed in which the various plant processes are mechanistically described. The plant model was calibrated and extensively validated on datasets collected throughout the different growing seasons in different research facilities in Flanders. This plant model was finally integrated into an existing greenhouse climate model and validated with data from the greenhouse climate and energy consumption. After validation, this integrated model was used to run scenarios on growing strategies and their impact on energy consumption, plant photosynthesis and fruit growth
Conductor development for a wide bore 10 T Nb3Sn model dipole magnet
An 87.8 mm bore single aperture 10 T Nb3Sn model dipole magnet is under development as a next step in the realization of high-field Nb3Sn dipole magnets. The magnet is a 2 layer cos(&thetas;)-dipole model as an alternative for the proposed NbTi D1 beam separator magnets for the LHC. After completion of the general magnetic and mechanical design, all attention is focused on the manufacturing and cabling of a novel powder-in-tube Nb3Sn conductor. This Nb3Sn conductor is characterized by a high non-Cu Jc of 2680 A/mm2 at 10 T with an effective filament size of about 20 ¿m. Cabling should result in a Rutherford type of cable exhibiting a moderate Jc degradation due to the cabling process itself, a low transverse stress sensitivity and a controllable minimum value of Rc. The conductor development program is presented and the results are evaluated. Progress on the actual realization of the coils is briefly describe
The impact of a managed care obesity intervention on clinical outcomes and costs: A prospective observational study
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/100261/1/oby20597.pd
Development of an electrochemical procedure for monitoring hydrogen sorption/desorption in steel
Hydrogen embrittlement leads to mechanical degradation of metals. Hence, hydrogen sorption/desorption properties of metals need to be characterized. An electrochemical procedure based on cyclic voltammetry (CV) and potentiostatic polarization is elaborated on plain-carbon steel. The procedure consists of first two consecutive CV cycles (pretreatment and reference CV), followed by cathodic H-charging, and subsequent CV scans to study and quantify the H-sorption/desorption. Best practice in this procedure is to perform all steps consecutively without interruption or sample manipulations between steps to avoid spontaneous H-loss. The H-related interaction with the steel is clearly identified in the CV and can be differentiated from the electrolyte contribution coming from thiourea. The study confirms the role of thiourea as H-recombination poison in alkaline solution, and also demonstrates that it contributes to the CV response. Additionally, various charging times are investigated to study the time to H-saturation, and also the scan rate during the CV procedure is varied to study time-related phenomena. Dedicated discharging experiments were included in the study to complement the CV data, giving additional insights in the H-steel interaction. Moreover, hydrogen related findings are successfully verified by using a complimentary method, i.e. hot extraction. The better understanding of the peaks in the CV and the continuous procedure result in a reliable methodology to characterize the H-sorption/desorption in steel
The Chandra Multi-Wavelength Project: Optical Spectroscopy and the Broadband Spectral Energy Distributions of X-ray Selected AGN
From optical spectroscopy of X-ray sources observed as part of ChaMP, we
present redshifts and classifications for a total of 1569 Chandra sources from
our targeted spectroscopic follow up using the FLWO, SAAO, WIYN, CTIO, KPNO,
Magellan, MMT and Gemini telescopes, and from archival SDSS spectroscopy. We
classify the optical counterparts as 50% BLAGN, 16% NELG, 14% ALG, and 20%
stars. We detect QSOs out to z~5.5 and galaxies out to z~3. We have compiled
extensive photometry from X-ray to radio bands. Together with our spectroscopic
information, this enables us to derive detailed SEDs for our extragalactic
sources. We fit a variety of templates to determine bolometric luminosities,
and to constrain AGN and starburst components where both are present. While
~58% of X-ray Seyferts require a starburst event to fit observed photometry
only 26% of the X-ray QSO population appear to have some kind of star formation
contribution. This is significantly lower than for the Seyferts, especially if
we take into account torus contamination at z>1 where the majority of our X-ray
QSOs lie. In addition, we observe a rapid drop of the percentage of starburst
contribution as X-ray luminosity increases. This is consistent with the
quenching of star formation by powerful QSOs, as predicted by the merger model,
or with a time lag between the peak of star formation and QSO activity. We have
tested the hypothesis that there should be a strong connection between X-ray
obscuration and star-formation but we do not find any association between X-ray
column density and star formation rate both in the general population or the
star-forming X-ray Seyferts. Our large compilation also allows us to report
here the identification of 81 XBONG, 78 z>3 X-ray sources and 8 Type-2 QSO
candidates. Also we have identified the highest redshift (z=5.4135) X-ray
selected QSO with optical spectroscopy.Comment: 17 pages, 16 figures, accepted for publication in ApJS. Full data
table and README file can be found online at
http://hea-www.harvard.edu/~pgreen/Papers.htm
Jubilee mugs:the monarchy and the Sex Pistols
With rare exceptions sociologists have traditionally had little to say about the British monarchy. In the exceptional cases of the Durkheimian functionalism of Shills and Young (1953), the left humanism of Birnbaum (1955), or the archaic state/backward nation thesis of Nairn (1988), the British nation has been conceived as a homogenous mass. The brief episode of the Sex Pistols' Jubilee year song 'God Save the Queen' exposed some of the divisions within the national 'mass', forcing a re-ordering of the balance between detachment and belonging to the Royal idea. I argue that the song acted as a kind of 'breaching experiment'. Its wilful provocation of Royalist sentiment revealed the level of sanction available to the media-industrial complex to enforce compliance to British self-images of loyal and devoted national communicants
Characterization of cefotaxime- and ciprofloxacin-resistant commensal Escherichia coli originating from Belgian farm animals indicates high antibiotic resistance transfer rates
Food-producing animals represent one of the sources of antibiotic resistant commensal bacteria. There is an increasing awareness that these bacteria might have the potential to transfer their resistance genes to other (pathogenic) bacteria. In this study, 50 commensal Escherichia coli strains originating from food-producing animals and resistant to the highest priority, critically important antibiotics cefotaxime and/or ciprofloxacin, were selected for further characterization. For each strain (i) an antibiogram, (ii) the phylogenetic group, (iii) plasmid replicon type, (iv) presence and identification of integrons, and (v) antibiotic resistance transfer ratios were determined. Forty-five of these strains were resistant to 5 or more antibiotics, and 6 strains were resistant to 10 or more antibiotics. Resistance was most common to ampicillin (100%), sulfamethoxazole, ciprofloxacin (82%), trimethoprim, tetracycline (74%), cefotaxime, (70%) and ceftazidime (62%). Phylogenetic groups A (62%) and B1 (26%) were most common, followed by C (8%) and E (4%). In 43 strains, more than 1 replicon type was detected, with FII (88%), FIB (70%), and I1 (48%) being the most encountered types. Forty strains, positive for integrons, all harbored a class I integron and seven of them contained an additional class II integron. No class III integrons were detected. The antibiotic resistance transfer was assessed by liquid mating experiments. The transfer ratio, expressed as the number of transconjugants per recipient, was between 10(-5) and 10(0) for cefotaxime resistance and between 10(-7) and 10(-1) for ciprofloxacin resistance. The results of the current study prove that commensal E. coli in food-production animals can be a source of multiple resistance genes and that these bacteria can easily spread their ciprofloxacin and cefotaxime resistance
- …
