4,280 research outputs found
Typical orbits of quadratic polynomials with a neutral fixed point: Brjuno type
We describe the topological behavior of typical orbits of complex quadratic
polynomials P_alpha(z)=e^{2\pi i alpha} z+z^2, with alpha of high return type.
Here we prove that for such Brjuno values of alpha the closure of the critical
orbit, which is the measure theoretic attractor of the map, has zero area. Then
combining with Part I of this work, we show that the limit set of the orbit of
a typical point in the Julia set is equal to the closure of the critical orbit.Comment: 38 pages, 5 figures; fixed the issues with processing the figure
White Lines and 3d-Occupancy for the 3d Transition-Metal Oxides
Electron energy-loss spectrometry was employed to measure the white lines at
the L23 absorption edges of the 3d transition-metal oxides and lithium
transition-metal oxides. The white-line ratio (L3/L2) was found to increase
between d^0 and d^5 and decrease between d^5 and d^10, consistent with previous
results for the transition metals and their oxides. The intensities of the
white lines, normalized to the post-edge background, are linear for the 3d
transition-metal oxides and lithium transition-metal oxides. An empirical
correlation between normalized white-line intensity and 3d occupancy is
established. It provides a method for measuring changes in the 3d-state
occupancy. As an example, this empirical relationship is used to measure
changes in the transition-metal valences of Li_{1-x}Ni_{0.8}Co_{0.2}O_2 in the
range of 0 < x < 0.64. In these experiments the 3d occupancy of the nickel ion
decreased upon lithium deintercalation, while the cobalt valence remained
constant.Comment: 6 pages, 7 figure
Entanglement Evolution in the Presence of Decoherence
The entanglement of two qubits, each defined as an effective two-level, spin
1/2 system, is investigated for the case that the qubits interact via a
Heisenberg XY interaction and are subject to decoherence due to population
relaxation and thermal effects. For zero temperature, the time dependent
concurrence is studied analytically and numerically for some typical initial
states, including a separable (unentangled) initial state. An analytical
formula for non-zero steady state concurrence is found for any initial state,
and optimal parameter values for maximizing steady state concurrence are given.
The steady state concurrence is found analytically to remain non-zero for low,
finite temperatures. We also identify the contributions of global and local
coherence to the steady state entanglement.Comment: 12 pages, 4 figures. The second version of this paper has been
significantly expanded in response to referee comments. The revised
manuscript has been accepted for publication in Journal of Physics
Ab initio study of the volume dependence of dynamical and thermodynamical properties of silicon
Motivated by the negative thermal expansion observed for silicon between 20 K
and 120 K, we present first an ab initio study of the volume dependence of
interatomic force constants, phonon frequencies of TA(X) and TA(L) modes, and
of the associated mode Gruneisen parameters. The influence of successive
nearest neighbors shells is analysed. Analytical formulas, taking into account
interactions up to second nearest neighbors, are developped for phonon
frequencies of TA(X) and TA(L) modes and the corresponding mode Gruneisen
parameters. We also analyze the volume and pressure dependence of various
thermodynamic properties (specific heat, bulk modulus, thermal expansion), and
point out the effect of the negative mode Gruneisen parameters of the acoustic
branches on these properties. Finally, we present the evolution of the mean
square atomic displacement and of the atomic temperature factor with the
temperature for different volumes, for which the anomalous effects are even
greater.Comment: 24 pages, Revtex 3.0, 11 figures, accepted for publication in Phys.
Rev.
Recommended from our members
Soft power, hard news:How journalists at state-funded transnational media legitimize their work
How do journalists working for different state-funded international news organizations legitimize their relationship to the governments which support them? In what circumstances might such journalists resist the diplomatic strategies of their funding states? We address these questions through a comparative study of journalists working for international news organizations funded by the Chinese, US, UK and Qatari governments. Using 52 interviews with journalists covering humanitarian issues, we explain how they minimized tensions between their diplomatic role and dominant norms of journalistic autonomy by drawing on three – broadly shared – legitimizing narratives, involving different kinds of boundary-work. In, the first ‘exclusionary’ narrative, journalists differentiated their ‘truthful’ news reporting from the ‘false’ state ‘propaganda’ of a common Other, the Russian-funded network, RT. In the second ‘fuzzifying’ narrative, journalists deployed the ambiguous notion of ‘soft power’ as an ambivalent ‘boundary concept’, to defuse conflicts between journalistic and diplomatic agendas. In the final ‘inversion’ narrative, journalists argued that, paradoxically, their dependence on funding states gave them greater ‘operational autonomy’. Even when journalists did resist their funding states, this was hidden or partial, and prompted less by journalists’ concerns about the political effects of their work, than by serious threats to their personal cultural capital
Exact solutions to the four Goldstone modes around a dark soliton of the nonlinear Schroedinger equation
This article is concerned with the linearisation around a dark soliton
solution of the nonlinear Schr\"odinger equation. Crucially, we present
analytic expressions for the four linearly-independent zero eigenvalue
solutions (also known as Goldstone modes) to the linearised problem. These
solutions are then used to construct a Greens matrix which gives the
first-order spatial response due to some perturbation. Finally we apply this
Greens matrix to find the correction to the dark-soliton wavefunction of a
Bose-Einstein condensate in the presence of fluctuations.Comment: 14 pages, 3 figures, submitted to Journal of Physics
Semiclassical Approximations in Phase Space with Coherent States
We present a complete derivation of the semiclassical limit of the coherent
state propagator in one dimension, starting from path integrals in phase space.
We show that the arbitrariness in the path integral representation, which
follows from the overcompleteness of the coherent states, results in many
different semiclassical limits. We explicitly derive two possible semiclassical
formulae for the propagator, we suggest a third one, and we discuss their
relationships. We also derive an initial value representation for the
semiclassical propagator, based on an initial gaussian wavepacket. It turns out
to be related to, but different from, Heller's thawed gaussian approximation.
It is very different from the Herman--Kluk formula, which is not a correct
semiclassical limit. We point out errors in two derivations of the latter.
Finally we show how the semiclassical coherent state propagators lead to
WKB-type quantization rules and to approximations for the Husimi distributions
of stationary states.Comment: 80 pages, 4 figure
Phonons and related properties of extended systems from density-functional perturbation theory
This article reviews the current status of lattice-dynamical calculations in
crystals, using density-functional perturbation theory, with emphasis on the
plane-wave pseudo-potential method. Several specialized topics are treated,
including the implementation for metals, the calculation of the response to
macroscopic electric fields and their relevance to long wave-length vibrations
in polar materials, the response to strain deformations, and higher-order
responses. The success of this methodology is demonstrated with a number of
applications existing in the literature.Comment: 52 pages, 14 figures, submitted to Review of Modern Physic
Benefits and risks of the hormetic effects of dietary isothiocyanates on cancer prevention
The isothiocyanate (ITC) sulforaphane (SFN) was shown at low levels (1-5 µM) to promote cell proliferation to 120-143% of the controls in a number of human cell lines, whilst at high levels (10-40 µM) it inhibited such cell proliferation. Similar dose responses were observed for cell migration, i.e. SFN at 2.5 µM increased cell migration in bladder cancer T24 cells to 128% whilst high levels inhibited cell migration. This hormetic action was also found in an angiogenesis assay where SFN at 2.5 µM promoted endothelial tube formation (118% of the control), whereas at 10-20 µM it caused significant inhibition. The precise mechanism by which SFN influences promotion of cell growth and migration is not known, but probably involves activation of autophagy since an autophagy inhibitor, 3-methyladenine, abolished the effect of SFN on cell migration. Moreover, low doses of SFN offered a protective effect against free-radical mediated cell death, an effect that was enhanced by co-treatment with selenium. These results suggest that SFN may either prevent or promote tumour cell growth depending on the dose and the nature of the target cells. In normal cells, the promotion of cell growth may be of benefit, but in transformed or cancer cells it may be an undesirable risk factor. In summary, ITCs have a biphasic effect on cell growth and migration. The benefits and risks of ITCs are not only determined by the doses, but are affected by interactions with Se and the measured endpoint
Whole breast and regional nodal irradiation in prone versus supine position in left sided breast cancer
Background: Prone whole breast irradiation (WBI) leads to reduced heart and lung doses in breast cancer patients receiving adjuvant radiotherapy. In this feasibility trial, we investigated the prone position for whole breast + lymph node irradiation (WB + LNI).
Methods: A new support device was developed for optimal target coverage, on which patients are positioned in a position resembling a phase from the crawl swimming technique (prone crawl position). Five left sided breast cancer patients were included and simulated in supine and prone position. For each patient, a treatment plan was made in prone and supine position for WB + LNI to the whole axilla and the unoperated part of the axilla. Patients served as their own controls for comparing dosimetry of target volumes and organs at risk (OAR) in prone versus in supine position.
Results: Target volume coverage differed only slightly between prone and supine position. Doses were significantly reduced (P < 0.05) in prone position for ipsilateral lung (Dmean, D2, V5, V10, V20, V30), contralateral lung (Dmean, D2), contralateral breast (Dmean, D2 and for total axillary WB + LNI also V5), thyroid (Dmean, D2, V5, V10, V20, V30), oesophagus (Dmean and for partial axillary WB + LNI also D2 and V5), skin (D2 and for partial axillary WB + LNI V105 and V107). There were no significant differences for heart and humeral head doses.
Conclusions: Prone crawl position in WB + LNI allows for good breast and nodal target coverage with better sparing of ipsilateral lung, thyroid, contralateral breast, contralateral lung and oesophagus when compared to supine position. There is no difference in heart and humeral head doses
- …
