517 research outputs found
What we observe is biased by what other people tell us: beliefs about the reliability of gaze behavior modulate attentional orienting to gaze cues
For effective social interactions with other people, information about the physical environment must be integrated with information about the interaction partner. In order to achieve this, processing of social information is guided by two components: a bottom-up mechanism reflexively triggered by stimulus-related information in the social scene and a top-down mechanism activated by task-related context information. In the present study, we investigated whether these components interact during attentional orienting to gaze direction. In particular, we examined whether the spatial specificity of gaze cueing is modulated by expectations about the reliability of gaze behavior. Expectations were either induced by instruction or could be derived from experience with displayed gaze behavior. Spatially specific cueing effects were observed with highly predictive gaze cues, but also when participants merely believed that actually non-predictive cues were highly predictive. Conversely, cueing effects for the whole gazed-at hemifield were observed with non-predictive gaze cues, and spatially specific cueing effects were attenuated when actually predictive gaze cues were believed to be non-predictive. This pattern indicates that (i) information about cue predictivity gained from sampling gaze behavior across social episodes can be incorporated in the attentional orienting to social cues, and that (ii) beliefs about gaze behavior modulate attentional orienting to gaze direction even when they contradict information available from social episodes
Skyrmion Hall Effect Revealed by Direct Time-Resolved X-Ray Microscopy
Magnetic skyrmions are highly promising candidates for future spintronic
applications such as skyrmion racetrack memories and logic devices. They
exhibit exotic and complex dynamics governed by topology and are less
influenced by defects, such as edge roughness, than conventionally used domain
walls. In particular, their finite topological charge leads to a predicted
"skyrmion Hall effect", in which current-driven skyrmions acquire a transverse
velocity component analogous to charged particles in the conventional Hall
effect. Here, we present nanoscale pump-probe imaging that for the first time
reveals the real-time dynamics of skyrmions driven by current-induced spin
orbit torque (SOT). We find that skyrmions move at a well-defined angle
{\Theta}_{SH} that can exceed 30{\deg} with respect to the current flow, but in
contrast to theoretical expectations, {\Theta}_{SH} increases linearly with
velocity up to at least 100 m/s. We explain our observation based on internal
mode excitations in combination with a field-like SOT, showing that one must go
beyond the usual rigid skyrmion description to unravel the dynamics.Comment: pdf document arxiv_v1.1. 24 pages (incl. 9 figures and supplementary
information
Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.
Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition
Gaze following is modulated by expectations regarding others’ action goals
Humans attend to social cues in order to understand and predict others' behavior. Facial expressions and gaze direction provide valuable information to infer others' mental states and intentions. The present study examined the mechanism of gaze following in the context of participants' expectations about successive action steps of an observed actor. We embedded a gaze-cueing manipulation within an action scenario consisting of a sequence of naturalistic photographs. Gaze-induced orienting of attention (gaze following) was analyzed with respect to whether the gaze behavior of the observed actor was in line or not with the action-related expectations of participants (i.e., whether the actor gazed at an object that was congruent or incongruent with an overarching action goal). In Experiment 1, participants followed the gaze of the observed agent, though the gaze-cueing effect was larger when the actor looked at an action-congruent object relative to an incongruent object. Experiment 2 examined whether the pattern of effects observed in Experiment 1 was due to covert, rather than overt, attentional orienting, by requiring participants to maintain eye fixation throughout the sequence of critical photographs (corroborated by monitoring eye movements). The essential pattern of results of Experiment 1 was replicated, with the gaze-cueing effect being completely eliminated when the observed agent gazed at an action-incongruent object. Thus, our findings show that covert gaze following can be modulated by expectations that humans hold regarding successive steps of the action performed by an observed agent
Neutralising antibodies for West Nile virus in horses from Brazilian Pantanal
Despite evidence of West Nile virus (WNV) activity in Colombia, Venezuela and Argentina, this virus has not been reported in most South American countries. In February 2009, we commenced an investigation for WNV in mosquitoes, horses and caimans from the Pantanal, Central-West Brazil. The sera of 168 horses and 30 caimans were initially tested using a flaviviruses-specific epitope-blocking enzyme-linked immunosorbent assay (blocking ELISA) for the detection of flavivirus-reactive antibodies. The seropositive samples were further tested using a plaque-reduction neutralisation test (PRNT90) for WNV and its most closely-related flaviviruses that circulate in Brazil to confirm the detection of specific virus-neutralising antibodies. Of the 93 (55.4%) blocking ELISA-seropositive horse serum samples, five (3%) were seropositive for WNV, nine (5.4%) were seropositive for St. Louis encephalitis virus, 18 (10.7%) were seropositive for Ilheus virus, three (1.8%) were seropositive for Cacipacore virus and none were seropositive for Rocio virus using PRNT90, with a criteria of > four-fold antibody titre difference. All caimans were negative for flaviviruses-specific antibodies using the blocking ELISA. No virus genome was detected from caiman blood or mosquito samples. The present study is the first report of confirmed serological evidence of WNV activity in Brazil
Epigenotyping in peripheral blood cell DNA and breast cancer risk: A proof of principle study
Epigenetic changes are emerging as one of the most important events in carcinogenesis. Two alterations in the pattern of DNA methylation in breast cancer (BC) have been previously reported; active estrogen receptor-α (ER-α) is associated with decreased methylation of ER-α target (ERT) genes, and polycomb group target (PCGT) genes are more likely than other genes to have promoter DNA hypermethylation in cancer. However, whether DNA methylation in normal unrelated cells is associated with BC risk and whether these imprints can be related to factors which can be modified by the environment, is unclear
Bad news from Fallujah
This study uses the thematic analysis developed by the Glasgow University Media Group to explore how the US, UK and German national press covered the US/Coalition assault on the Iraqi city of Fallujah in November 2004. The study relies on quantitative and qualitative full text content analyses to assess 428 news, editorial and commentary items. The article suggests that, while government and military officials of the US/Coalition had argued the military ‘operation’ was necessary to secure Iraq and defeat an ‘insurgency’, organisations and actors from Iraqi society refer to the ‘operation’ as ‘collective punishment’ and a ‘massacre’ that targeted the Iraqi population. The article investigates how the press represented each of these perspectives. The findings suggest that the press overemphasised the US/Coalition perspective despite striking counter evidence. Critical aspects of coverage largely focused on tactical elements of the military dimension of the event. The article concludes that such findings are in accord with hegemonic models of media performance
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Long non-coding RNAs and cancer: a new frontier of translational research?
Author manuscriptTiling array and novel sequencing technologies have made available the transcription profile of the entire human genome. However, the extent of transcription and the function of genetic elements that occur outside of protein-coding genes, particularly those involved in disease, are still a matter of debate. In this review, we focus on long non-coding RNAs (lncRNAs) that are involved in cancer. We define lncRNAs and present a cancer-oriented list of lncRNAs, list some tools (for example, public databases) that classify lncRNAs or that scan genome spans of interest to find whether known lncRNAs reside there, and describe some of the functions of lncRNAs and the possible genetic mechanisms that underlie lncRNA expression changes in cancer, as well as current and potential future applications of lncRNA research in the treatment of cancer.RS is supported as a fellow of the TALENTS Programme (7th R&D Framework Programme, Specific Programme: PEOPLE—Marie Curie Actions—COFUND). MIA is supported as a PhD fellow of the FCT (Fundação para a Ciência e Tecnologia), Portugal. GAC is supported as a fellow by The University of Texas MD Anderson Cancer Center Research Trust, as a research scholar by The University of Texas System Regents, and by the Chronic Lymphocytic Leukemia Global Research Foundation. Work in GAC’s laboratory is supported in part by the NIH/ NCI (CA135444); a Department of Defense Breast Cancer Idea Award; Developmental Research Awards from the Breast Cancer, Ovarian Cancer, Brain Cancer, Multiple Myeloma and Leukemia Specialized Programs of Research Excellence (SPORE) grants from the National Institutes of Health; a 2009 Seena Magowitz–Pancreatic Cancer Action Network AACR Pilot Grant; the Laura and John Arnold Foundation and the RGK Foundation
- …
