719 research outputs found
A mathematical model for breath gas analysis of volatile organic compounds with special emphasis on acetone
Recommended standardized procedures for determining exhaled lower respiratory
nitric oxide and nasal nitric oxide have been developed by task forces of the
European Respiratory Society and the American Thoracic Society. These
recommendations have paved the way for the measurement of nitric oxide to
become a diagnostic tool for specific clinical applications. It would be
desirable to develop similar guidelines for the sampling of other trace gases
in exhaled breath, especially volatile organic compounds (VOCs) which reflect
ongoing metabolism. The concentrations of water-soluble, blood-borne substances
in exhaled breath are influenced by: (i) breathing patterns affecting gas
exchange in the conducting airways; (ii) the concentrations in the
tracheo-bronchial lining fluid; (iii) the alveolar and systemic concentrations
of the compound. The classical Farhi equation takes only the alveolar
concentrations into account. Real-time measurements of acetone in end-tidal
breath under an ergometer challenge show characteristics which cannot be
explained within the Farhi setting. Here we develop a compartment model that
reliably captures these profiles and is capable of relating breath to the
systemic concentrations of acetone. By comparison with experimental data it is
inferred that the major part of variability in breath acetone concentrations
(e.g., in response to moderate exercise or altered breathing patterns) can be
attributed to airway gas exchange, with minimal changes of the underlying blood
and tissue concentrations. Moreover, it is deduced that measured end-tidal
breath concentrations of acetone determined during resting conditions and free
breathing will be rather poor indicators for endogenous levels. Particularly,
the current formulation includes the classical Farhi and the Scheid series
inhomogeneity model as special limiting cases.Comment: 38 page
Tumor-induced STAT3 activation in monocytic myeloid-derived suppressor cells enhances stemness and mesenchymal properties in human pancreatic cancer
Pancreatic cancer (PC) mobilizes myeloid cells from the bone marrow to the tumor where they promote tumor growth and proliferation. Cancer stem cells (CSCs) are a population of tumor cells that are responsible for tumor initiation. Aldehyde dehydrogenase-1 activity in PC identifies CSCs, and its activity has been correlated with poor overall prognosis in human PC. Myeloid cells have been shown to impact tumor stemness, but the impact of immunosuppressive tumor-infiltrating granulocytic and monocytic myeloid-derived suppressor cells (Mo-MDSC) on ALDH1(Bright) CSCs and epithelial to mesenchymal transition is not well understood. In this study, we demonstrate that Mo-MDSC (CD11b(+)/Gr1(+)/Ly6G(−)/Ly6C(hi)) significantly increase the frequency of ALDH1(Bright) CSCs in a mouse model of PC. Additionally, there was significant upregulation of genes associated with epithelial to mesenchymal transition. We also found that human PC converts CD14(+) peripheral blood monocytes into Mo-MDSC (CD14(+)/HLA-DR(low/−)) in vitro, and this transformation is dependent on the activation of the STAT3 pathway. In turn, these Mo-MDSC increase the frequency of ALDH1(Bright) CSCs and promote mesenchymal features of tumor cells. Finally, blockade of STAT3 activation reversed the increase in ALDH1(Bright) CSCs. These data suggest that the PC tumor microenvironment transforms monocytes to Mo-MDSC by STAT3 activation, and these cells increase the frequency of ALDH1(Bright) CSCs. Therefore, targeting STAT3 activation may be an effective therapeutic strategy in targeting CSCs in PC. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00262-014-1527-x) contains supplementary material, which is available to authorized users
Caractérisations chimiques des ustensiles de cuisine artisanale en aluminium fabriqués au Burkina Faso : cas de Ouagadougou
Dans le cadre de la valorisation des matériaux d’origine artisanale du Burkina Faso, deux (02) types d’échantillons d’ustensiles de cuisine (marmites artisanales) en aluminium prélevés dans les différentes zones de la ville de Ouagadougou, ont subi une série d’analyses chimiques. L'artisanat pose le problème de la qualité des produits finis du pays surtout quand on sait qu'ils sont utilisés pour la cuisine de tous les jours. Ainsi, aucun de ces alliages ne devrait être utilisé pour la fabrication d'ustensiles de cuisine, si nous nous référons à la norme française EN 601 en juillet 2004. Ce travail est une contribution à la caractérisation physique et chimique des marmites artisanales au centre du Burkina Faso. L’analyse à la fluorescence X (XRF) indique que la majeure partie des échantillons étudiés, contiennent environ 87,3% d’aluminium. La diffraction aux rayons X (DRX), la spectrométrie de photoélectrons (XPS), la microscopie optique (MO) montrent que les éléments constitutifs essentiels des échantillons d’ustensiles de cuisine sont : Aluminium, Silicium, cuivre, Magnésium et de Zinc. Enfin, une mesure par colorimétrie permet de mettre en évidence la présence de l’aluminium en solution.Mots clés : Alliages d’aluminium, analyses chimiques, DRX, MO, XPS, colorimétrie
Identification of neural networks that contribute to motion sickness through principal components analysis of fos labeling induced by galvanic vestibular stimulation
Motion sickness is a complex condition that includes both overt signs (e.g., vomiting) and more covert symptoms (e.g., anxiety and foreboding). The neural pathways that mediate these signs and symptoms are yet to identified. This study mapped the distribution of c-fos protein (Fos)-like immunoreactivity elicited during a galvanic vestibular stimulation paradigm that is known to induce motion sickness in felines. A principal components analysis was used to identify networks of neurons activated during this stimulus paradigm from functional correlations between Fos labeling in different nuclei. This analysis identified five principal components (neural networks) that accounted for greater than 95% of the variance in Fos labeling. Two of the components were correlated with the severity of motion sickness symptoms, and likely participated in generating the overt signs of the condition. One of these networks included neurons in locus coeruleus, medial, inferior and lateral vestibular nuclei, lateral nucleus tractus solitarius, medial parabrachial nucleus and periaqueductal gray. The second included neurons in the superior vestibular nucleus, precerebellar nuclei, periaqueductal gray, and parabrachial nuclei, with weaker associations of raphe nuclei. Three additional components (networks) were also identified that were not correlated with the severity of motion sickness symptoms. These networks likely mediated the covert aspects of motion sickness, such as affective components. The identification of five statistically independent component networks associated with the development of motion sickness provides an opportunity to consider, in network activation dimensions, the complex progression of signs and symptoms that are precipitated in provocative environments. Similar methodology can be used to parse the neural networks that mediate other complex responses to environmental stimuli. © 2014 Balaban et al
The global pendulum swing towards community health workers in low- and middle-income countries: A scoping review of trends, geographical distribution and programmatic orientations, 2005 to 2014
BACKGROUND: There has been a substantial increase in publications and interest in community health workers (CHWs) in low- and middle-income countries (LMIC) over the last years. This paper examines the growth, geographical distribution and programmatic orientations of the indexed literature on CHWs in LMIC over a 10-year period. METHODS: A scoping review of publications on CHWs from 2005 to 2014 was conducted. Using an inclusive list of terms, we searched seven databases (including MEDLINE, CINAHL, Cochrane) for all English-language publications on CHWs in LMIC. Two authors independently screened titles/abstracts, downloading full-text publications meeting inclusion criteria. These were coded in an Excel spreadsheet by year, type of publication (e.g. review, empirical), country, region, programmatic orientation (e.g. maternal-child health, HIV/AIDS, comprehensive) and CHW roles (e.g. prevention, treatment) and further analysed in Stata14. Drawing principally on the subset of review articles, specific roles within programme areas were identified and grouped. FINDINGS: Six hundred seventy-eight publications from 46 countries on CHWs were inventoried over the 10-year period. There was a sevenfold increase in annual number of publications from 23 in 2005 to 156 in 2014. Half the publications were reporting on initiatives in Africa, a third from Asia and 11 % from the Americas (mostly Brazil). The largest single focus and driver of the growth in publications was on CHW roles in meeting the Millennium Development Goals of maternal, child and neonatal survival (35 % of total), followed by HIV/AIDS (16 %), reproductive health (6 %), non-communicable diseases (4 %) and mental health (4 %). Only 17 % of the publications approached CHW roles in an integrated fashion. There were also distinct regional (and sometimes country) profiles, reflecting different histories and programme traditions. CONCLUSIONS: The growth in literature on CHWs provides empirical evidence of ever-increasing expectations for addressing health burdens through community-based action. This literature has a strong disease- or programme-specific orientation, raising important questions for the design and sustainable delivery of integrated national programmes.Scopu
Advances, challenges and future directions for stem cell therapy in amyotrophic lateral sclerosis
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative condition where loss of motor neurons within the brain and spinal cord leads to muscle atrophy, weakness, paralysis and ultimately death within 3–5 years from onset of symptoms. The specific molecular mechanisms underlying the disease pathology are not fully understood and neuroprotective treatment options are minimally effective.
In recent years, stem cell transplantation as a new therapy for ALS patients has been extensively investigated, becoming an intense and debated field of study. In several preclinical studies using the SOD1G93A mouse model of ALS, stem cells were demonstrated to be neuroprotective, effectively delayed disease onset and extended survival. Despite substantial improvements in stem cell technology and promising results in preclinical studies, several questions still remain unanswered, such as the identification of the most suitable and beneficial cell source, cell dose, route of delivery and therapeutic mechanisms. This review will cover publications in this field and comprehensively discuss advances, challenges and future direction regarding the therapeutic potential of stem cells in ALS, with a focus on mesenchymal stem cells. In summary, given their high proliferation activity, immunomodulation, multi-differentiation potential, and the capacity to secrete neuroprotective factors, adult mesenchymal stem cells represent a promising candidate for clinical translation. However, technical hurdles such as optimal dose, differentiation state, route of administration, and the underlying potential therapeutic mechanisms still need to be assessed
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Twisting biomaterials around your little finger: environmental impacts of bio-based wrappings
Prognostic value of interleukin-1 receptor antagonist gene polymorphism and cytomegalovirus seroprevalence in patients with coronary artery disease
BACKGROUND: Chronic inflammatory stimuli such as cytomegalovirus (CMV) infection and various genetic polymorphisms determining the inflammatory response are assumed to be important risk factors in atherosclerosis. We investigated whether patients with stable coronary artery disease (CAD) and homozygous for allele 2 of the interleukin 1 receptor antagonist (IL-1RA) gene and seropositive for CMV represent a group particular susceptible for recurrent cardiovascular events. METHODS: In a series of 300 consecutive patients with angiographically defined CAD a prospective follow-up was conducted (mean age 57.9 years, median follow-up time 38.2 months). RESULTS: No statistically significant relationship was found between CMV serostatus and IL-1RN*2 (alone or in combination) and risk for future cardiovascular events (CVE). The hazard ratio (HR) for a CVE given positive CMV-serology and IL-1RN*2 was 1.07 (95% confidence interval (CI) 0.32–3.72) in the fully adjusted model compared to seronegative CMV patients not carrying the IL-1RN*2 allele. In this prospective cohort study involving 300 patients with angiographically defined CAD at baseline, homozygousity for allele 2 of the IL-1 RA and seropositivity to CMV alone and in combination were not associated with an increased risk for cardiovascular events during follow-up; in addition, combination of the CMV-seropositivity and IL-1RN*2 allele were not associated with a proinflammatory response CONCLUSION: Our study suggests that seropositivity to CMV and IL-1RA*2 genotype alone or in combination might not be a strong risk factor for recurrent cardiovascular events in patients with manifest CAD, and is not associated with levels of established inflammatory markers
Unusual magneto-optical behavior induced by local dielectric variations under localized surface plasmon excitations
We study the effect of global and local dielectric variations on the polarization conversion rps response of ordered nickel nanowires embedded in an alumina matrix. When considering local changes, we observe a non-monotonous behavior of the rps, its intensity unusually modified far beyond to what it is expected for a monotonous change of the whole refractive index of the embedding medium. This is related to the local redistribution of the electromagnetic field when a localized surface plasmon is excited. This finding may be employed to develop and improve new biosensing magnetoplasmonic devices
- …
