1,219 research outputs found
Effects of heat release in a turbulent, reacting shear layer
Experiments were conducted to study the effects of heat release in a planar, gas-phase, reacting mixing layer formed between two free streams, one containing hydrogen in
an inert diluent, the other, fluorine in an inert diluent. Sufficiently high concentrations of reactants were utilized to produce adiabatic flame temperature rises of up to
940 K (corresponding to 1240 K absolute). The temperature field was measured at eight fixed points across the layer. Flow visualization was accomplished by schlieren
spark and motion picture photography. Mean velocity information was extracted from Pitot-probe dynamic pressure measurements. The results showed that the growth rate of the layer, for conditions of zero streamwise pressure gradient, decreased slightly with increasing heat release. The overall entrainment into the layer was substantially reduced as a consequence of heat release. A posteriori
calculations suggest that the decrease in layer growth rate is consistent with a corresponding reduction in turbulent shear stress. Large-scale coherent structures
were observed at all levels of heat release in this investigation. The mean structure spacing decreased with increasing temperature. This decrease was more than the
corresponding decrease in shear-layer growth rate, and suggests that the mechanisms of vortex amalgamation are, in some manner, inhibited by heat release. The mean
temperature rise profiles; normalized by the adiabatic flame temperature rise, were not greatly changed in shape over the range of heat release of this investigation. A
small decrease in normalized mean temperature rise with heat release was however observed. Imposition of a favourable pressure gradient in a mixing layer with heat
release resulted in an additional decrease in layer growth rate, and caused only a very slight increase in the mixing and amount of chemical product formation. The
additional decrease in layer growth rate is shown to be accounted for in terms of the change in free-stream velocity ratio induced by the pressure gradient
Dielectrophoresis of nanocolloids: a molecular dynamics study
Dielectrophoresis (DEP), the motion of polarizable particles in non-uniform
electric fields, has become an important tool for the transport, separation,
and characterization of microparticles in biomedical and nanoelectronics
research. In this article we present, to our knowledge, the first molecular
dynamics simulations of DEP of nanometer-sized colloidal particles. We
introduce a simplified model for polarizable nanoparticles, consisting of a
large charged macroion and oppositely charged microions, in an explicit
solvent. The model is then used to study DEP motion of the particle at
different combinations of temperature and electric field strength. In accord
with linear response theory, the particle drift velocities are shown to be
proportional to the DEP force. Analysis of the colloid DEP mobility shows a
clear time dependence, demonstrating the variation of friction under
non-equilibrium. The time dependence of the mobility further results in an
apparent weak variation of the DEP displacements with temperature
Fine structure of excitons in CuO
Three experimental observations on 1s-excitons in CuO are not consistent
with the picture of the exciton as a simple hydrogenic bound state: the
energies of the 1s-excitons deviate from the Rydberg formula, the total exciton
mass exceeds the sum of the electron and hole effective masses, and the
triplet-state excitons lie above the singlet. Incorporating the band structure
of the material, we calculate the corrections to this simple picture arising
from the fact that the exciton Bohr radius is comparable to the lattice
constant. By means of a self-consistent variational calculation of the total
exciton mass as well as the ground-state energy of the singlet and the
triplet-state excitons, we find excellent agreement with experiment.Comment: Revised abstract; 10 pages, revtex, 3 figures available from G.
Kavoulakis, Physics Department, University of Illinois, Urban
Theory of optical spectra of polar quantum wells: Temperature effects
Theoretical and numerical calculations of the optical absorption spectra of
excitons interacting with longitudinal-optical phonons in quasi-2D polar
semiconductors are presented. In II-VI semiconductor quantum wells, exciton
binding energy can be tuned on- and off-resonance with the longitudinal-optical
phonon energy by varying the quantum well width. A comprehensive picture of
this tunning effect on the temperature-dependent exciton absorption spectrum is
derived, using the exciton Green's function formalism at finite temperature.
The effective exciton-phonon interaction is included in the Bethe-Salpeter
equation. Numerical results are illustrated for ZnSe-based quantum wells. At
low temperatures, both a single exciton peak as well as a continuum resonance
state are found in the optical absorption spectra. By contrast, at high enough
temperatures, a splitting of the exciton line due to the real phonon absorption
processes is predicted. Possible previous experimental observations of this
splitting are discussed.Comment: 10 pages, 9 figures, to appear in Phys. Rev. B. Permanent address:
[email protected]
Angle resolved photoemission spectroscopy of Sr_2CuO_2Cl_2 - a revisit
We have investigated the lowest binding-energy electronic structure of the
model cuprate Sr_2CuO_2Cl_2 using angle resolved photoemission spectroscopy
(ARPES). Our data from about 80 cleavages of Sr_2CuO_2Cl_2 single crystals give
a comprehensive, self-consistent picture of the nature of the first
electron-removal state in this model undoped CuO_2-plane cuprate. Firstly, we
show a strong dependence on the polarization of the excitation light which is
understandable in the context of the matrix element governing the photoemission
process, which gives a state with the symmetry of a Zhang-Rice singlet.
Secondly, the strong, oscillatory dependence of the intensity of the Zhang-Rice
singlet on the exciting photon-energy is shown to be consistent with
interference effects connected with the periodicity of the crystal structure in
the crystallographic c-direction. Thirdly, we measured the dispersion of the
first electron-removal states along G->(pi,pi) and G->(pi,0), the latter being
controversial in the literature, and have shown that the data are best fitted
using an extended t-J-model, and extract the relevant model parameters. An
analysis of the spectral weight of the first ionization states for different
excitation energies within the approach used by Leung et al. (Phys. Rev. B56,
6320 (1997)) results in a strongly photon-energy dependent ratio between the
coherent and incoherent spectral weight. The possible reasons for this
observation and its physical implications are discussed.Comment: 10 pages, 8 figure
and Oxygen Stoichiometry: Structure, Resistivity, Fermi Surface Topology and Normal State Properties
(2212) single crystal samples
were studied using transmission electron microscopy (TEM), plane
() and axis () resistivity, and high resolution
angle-resolved ultraviolet photoemission spectroscopy (ARUPS). TEM reveals that
the modulation in the axis for doped 2212 is dominantly
of type that is not sensitive to the oxygen content of the system, and the
system clearly shows a structure of orthorhombic symmetry. Oxygen annealed
samples exhibit a much lower axis resistivity and a resistivity minimum at
K. He-annealed samples exhibit a much higher axis resistivity and
behavior below 300K. The Fermi surface (FS) of oxygen annealed
2212 mapped out by ARUPS has a pocket in the FS around the
point and exhibits orthorhombic symmetry. There are flat, parallel sections of
the FS, about 60\% of the maximum possible along , and about 30\%
along . The wavevectors connecting the flat sections are about
along , and about along , rather than . The symmetry of the near-Fermi-energy dispersing
states in the normal state changes between oxygen-annealed and He-annealed
samples.Comment: APS_REVTEX 3.0, 49 pages, including 11 figures, available upon
request. Submitted to Phys. Rev. B
The High Road
Discusses the obstacles to international accounting standards convergence. Effort of the International Accounting Standards Committee (IASC) to promote to convergence theme; Comparison between the convergence frameworks of the U.S. Securities and Exchange Commission and the Financial Accounting Standards Board; Sections of the \u27Framework for the Preparation and Presentation of Financial Statements\u27 document issued by the IASC
Obstacles to International Accounting Standards Convergence
Given the recent changes in the international sector, along with the similarities in the conceptual frameworks of the FASB and IASC, the relatively swift convergence of US GAAP and International Accounting Standards is a distinct possibility. This article contends convergence is possible, and reviews 3 key areas that could hinder or foster it: 1. the general organization, in terms of form and topical content, of the frameworks, 2. a significant pervasive difference between the frameworks, and 3. specific differences within the major topical areas of the frameworks
- …
