7,147 research outputs found
An investigation of hydraulic-line resonance and its attenuation
An investigation of fluid resonance in high-pressure hydraulic lines has been made with two types of fluid dampers (or filters) installed in the line. One type involved the use of one or more closed-end tubes branching at right angles from a main line, and the other type was a fluid muffler installed in-line. These devices were evaluated in forced vibration tests with oscillatory disturbances over a 1000-Hz range applied to one end of the line and with oscillatory pressures measured at various stations along the main pipe. Limited applications of acoustic-wave theory to the branched systems are also included. Results show varying attenuations of pressure perturbations, depending on the number and location of branches and the type of muffler. Up to three branches were used in the branch-resonator study, and the largest frequency range with maximum attenuation was obtained for a three-branch configuration. The widest frequency ranges with significant attenuations were obtained with two types of fluid mufflers
Strichartz estimates for the Schr\"odinger equation on polygonal domains
We prove Strichartz estimates with a loss of derivatives for the
Schr\"odinger equation on polygonal domains with either Dirichlet or Neumann
homogeneous boundary conditions. Using a standard doubling procedure, estimates
the on polygon follow from those on Euclidean surfaces with conical
singularities. We develop a Littlewood-Paley squarefunction estimate with
respect to the spectrum of the Laplacian on these spaces. This allows us to
reduce matters to proving estimates at each frequency scale. The problem can be
localized in space provided the time intervals are sufficiently small.
Strichartz estimates then follow from a result of the second author regarding
the Schr\"odinger equation on the Euclidean cone.Comment: 12 page
Results of dynamic aperture studies for increased beta* with beam-beam interactions
We have evaluated the dynamic aperture in the presence of beam-beam effects for alternative running scenarios, in particular for the commissioning and early operation of the LHC. For top energy of 7 TeV we have studied the effect of increased beta* up to beta* = 2 m and found the expected increase of dynamic aperture for a moderate loss of luminosity. We have further studied the possibility of head-on collisions with a small number of bunches at injection energy
Long Range Beam-beam Effects in the LHC
We report on the experience with long-range beam--beam effects in the LHC, in
dedicated studies as well as the experience from operation. Where possible, we
compare the observations with the expectations.Comment: Presented at the ICFA Mini-Workshop on Beam-Beam in Hadron Colliders,
CERN, Geneva, Switzerland, 18-22 March 201
Trailing Edge Noise Reduction by Passive and Active Flow Controls
This paper presents the results on the use of porous metal foams (passive control) and dielectric barrier surface plasma actuations (active control) for the reduction of vortex shedding tonal noises from the nonflat plate type trailing edge serration in a NACA0012 airfoil previously discussed in Chong et al. (AIAA J. Vol. 51, 2013, pp. 2665-2677). The use of porous metal foams to fill the interstices between adjacent members of the sawtooth can almost completely suppress the vortex shedding tonal noise, whilst the serration effect on the broadband noise reduction is retained. This concept will promote the nonflat plate type serrated trailing edge to become a genuine alternative to the conventional flat plate type serrated trailing edge, which is known to have drawbacks in the structural stability, aerodynamic performances and implementation issues. For the plasma actuators, configuration which produces electric wind in a tangential direction is found to be not very effective in suppressing the vortices emanated from the serration blunt root. On the other hand, for the plasma configuration which produces electric wind in a vertical direction, good level of vortex shedding tonal noise reduction has been demonstrated. However, the self noise produced by the plasma actuators negates the noise benefits on the tonal noise reduction. This characteristic illustrates the need to further develop the plasma actuators in a two pronged approach. First is to increase the electric wind speed, thereby allowing the plasma actuators to be used in a higher free jet velocity which naturally produces a larger level of jet noise. Second, the self noise radiated by the plasma actuators should be reduced
Novel applications of the NASA/GSFC Viterbi decoder hardware simulator
The NASA/GSFC developed an all digital, real time, programmable Viterbi decoder simulator operating at rates up to 6 Msps. With this simulator, the bit error rate (BER) performance of convolutionally encoded/Viterbi decoded Shuttle-TDRSS return link channels under pulsed radio frequency interference (RFI) conditions has been predicted. The principles of the simulator are described with special emphasis on the channel simulator and the essential interaction between CLASS software and the simulator. The sensitivity of coded BER as function of several illustrative RFI parameters is discussed for two typical Shuttle-TDRSS return link configurations
Beam-Beam Interaction Effects for Separated Beams in a Proton-Antiproton Collider
An investigation of the beam-beam interaction as a function of transverse separation of colliding proton and antiproton bunches is presented. Resonant excitation (particle losses) was experimentally observed at different transverse beam separations in a large storage ring. Experimental results were compared to simulated particle losses in a beam-beam simulation model
Mode spectrum and temporal soliton formation in optical microresonators
The formation of temporal dissipative solitons in optical microresonators
enables compact, high repetition rate sources of ultra-short pulses as well as
low noise, broadband optical frequency combs with smooth spectral envelopes.
Here we study the influence of the resonator mode spectrum on temporal soliton
formation. Using frequency comb assisted diode laser spectroscopy, the measured
mode structure of crystalline MgF2 resonators are correlated with temporal
soliton formation. While an overal general anomalous dispersion is required, it
is found that higher order dispersion can be tolerated as long as it does not
dominate the resonator's mode structure. Mode coupling induced avoided
crossings in the resonator mode spectrum are found to prevent soliton
formation, when affecting resonator modes close to the pump laser. The
experimental observations are in excellent agreement with numerical simulations
based on the nonlinear coupled mode equations, which reveal the rich interplay
of mode crossings and soliton formation
- …
