23,214 research outputs found
Shocks in non-loaded bead chains with impurities
We numerically investigate the problem of the propagation of a shock in an
horizontal non-loaded granular chain with a bead interaction force exponent
varying from unity to large values. When is close to unity we observed
a cross-over between a nonlinearity-dominated regime and a solitonic one, the
latest being the final steady state of the propagating wave. In the case of
large values of the deformation field given by the numerical
simulations is completely different from the one obtained by analytical
calculation. In the following we studied the interaction of these shock waves
with a mass impurity placed in the bead chain. Two different physical pictures
emerge whether we consider a light or a heavy impurity mass. The scatter of the
shock wave with a light impurity yields damped oscillations of the impurity
which then behave as a solitary wave source. Differently an heavy impurity is
just shifted by the shock and the transmitted wave loses its solitonic
character being fragmented into waves of decreasing amplitudes.Comment: 9 pages, 18 figures, Accepted in European Physical Journal
PACKER: a switchbox router based on conflict elimination by local transformations
PACKER is an algorithm for switchbox routing, based on a novel approach. In an initial phase, the connectivity of each net is established without taking the other nets into account. In general, this gives rise to conflicts (short circuits). In the second stage, the conflicts are removed iteratively using connectivity-preserving local transformations. They reshape a net by displacing one of its segments without disconnecting it from the net. The transformations are applied in a asystematic way using a scan line technique. The results obtained by PACKER are very positive: it solves all well-known benchmark example
Nonlinear structural vibrations by the linear acceleration method
Numerical integration method for calculating dynamic response of nonlinear elastic structure
New Young Stars and Brown Dwarfs in the Upper Scorpius Association
To improve the census of the Upper Sco association (~11 Myr, ~145 pc), we
have identified candidate members using parallaxes, proper motions, and
color-magnitude diagrams from several wide-field imaging surveys and have
obtained optical and infrared spectra of several hundred candidates to measure
their spectral types and assess their membership. We also have performed
spectroscopy on a smaller sample of previously known or suspected members to
refine their spectral types and evidence of membership. We have classified 530
targets as members of Upper Sco, 377 of which lack previous spectroscopy. Our
new compilation of all known members of the association contains 1631 objects.
Although the census of Upper Sco has expanded significantly over the last
decade, there remain hundreds of candidates that lack spectroscopy. The precise
parallaxes and proper motions from the second data release of Gaia should
extend down to substellar masses in Upper Sco, which will greatly facilitate
the identification of the undiscovered members.Comment: Astronomical Journal, in press; machine readable tables and fits
spectra available at http://personal.psu.edu/kll207/usco.ta
Combining textual and visual information processing for interactive video retrieval: SCHEMA's participation in TRECVID 2004
In this paper, the two different applications based on the Schema Reference System that were developed by the SCHEMA NoE for participation to the search task of TRECVID 2004 are illustrated. The first application, named ”Schema-Text”, is an interactive retrieval application that employs only textual information while the second one, named ”Schema-XM”, is an extension of the former, employing algorithms and
methods for combining textual, visual and higher level information. Two runs for each application were submitted, I A 2 SCHEMA-Text 3, I A 2 SCHEMA-Text 4 for Schema-Text and I A 2 SCHEMA-XM 1, I A 2 SCHEMA-XM 2 for Schema-XM. The comparison of these two applications in terms of retrieval efficiency revealed that the combination of information from different data sources can provide higher efficiency for retrieval systems. Experimental testing additionally revealed that initially performing a text-based query and subsequently proceeding with visual similarity search using one of the returned relevant keyframes as an example image is a good scheme for combining visual and textual information
Towards beating the curse of dimensionality for gravitational waves using Reduced Basis
Using the Reduced Basis approach, we efficiently compress and accurately
represent the space of waveforms for non-precessing binary black hole
inspirals, which constitutes a four dimensional parameter space (two masses,
two spin magnitudes). Compared to the non-spinning case, we find that only a
{\it marginal} increase in the (already relatively small) number of reduced
basis elements is required to represent any non-precessing waveform to nearly
numerical round-off precision. Most parameters selected by the algorithm are
near the boundary of the parameter space, leaving the bulk of its volume
sparse. Our results suggest that the full eight dimensional space (two masses,
two spin magnitudes, four spin orientation angles on the unit sphere) may be
highly compressible and represented with very high accuracy by a remarkably
small number of waveforms, thus providing some hope that the number of
numerical relativity simulations of binary black hole coalescences needed to
represent the entire space of configurations is not intractable. Finally, we
find that the {\it distribution} of selected parameters is robust to different
choices of seed values starting the algorithm, a property which should be
useful for indicating parameters for numerical relativity simulations of binary
black holes. In particular, we find that the mass ratios of
non-spinning binaries selected by the algorithm are mostly in the interval
and that the median of the distribution follows a power-law behavior
Accurate Evolutions of Orbiting Binary Black Holes
We present a detailed analysis of binary black hole evolutions in the last orbit and demonstrate consistent and convergent results for the trajectories of the individual bodies. The gauge choice can significantly affect the overall accuracy of the evolution. It is possible to reconcile certain gauge-dependent discrepancies by examining the convergence limit. We illustrate these results using an initial data set recently evolved by Brügmann et al. [Phys. Rev. Lett. 92, 211101 (2004)]. For our highest resolution and most accurate gauge, we estimate the duration of this data set's last orbit to be approximately 59MADM
Neural network modeling of memory deterioration in Alzheimer's disease
The clinical course of Alzheimer's disease (AD) is generally characterized by progressive gradual deterioration, although large clinical variability exists. Motivated by the recent quantitative reports of synaptic changes in AD, we use a neural network model to investigate how the interplay between synaptic deletion and compensation determines the pattern of memory deterioration, a clinical hallmark of AD. Within the model we show that the deterioration of memory retrieval due to synaptic deletion can be much delayed by multiplying all the remaining synaptic weights by a common factor, which keeps the average input to each neuron at the same level. This parallels the experimental observation that the total synaptic area per unit volume (TSA) is initially preserved when synaptic deletion occurs. By using different dependencies of the compensatory factor on the amount of synaptic deletion one can define various compensation strategies, which can account for the observed variation in the severity and progression rate of AD
- …
